<IN
nmv
“HHNEEEE

NAVAL OCEAN SYSTEMS CENTER, SAN DIEGO, CA
VLS1 FLOATING POINT CHIP DESIGN STUDY BY
JG NASH HUGHES RESEARCH LABORATORIES

M
v
o
)

CR 312
e WD

Contractor Report 312
November 1985

VLSI FLOATING POINT CHIP
DESIGN STUDY

J. G. Nash
Hughes Research Laboratories

Naval Ocean Systems Center san biego. caifornia s2152-5000

Approved for public release, The views and conclustons contained in

distnbution unhmited this report are those of the authors and
should not be interpreted as representing
the official policies. either expressed or
implied. of the Naval Ocean Systems
Center or the U S Government

NAVAL OCEAN SYSTEMS CENTER SAN DIEGO, CA 92152

F. M. PESTORIUS, CAPT, USN R.M.HILLYER

Commandaer Technical Director

ADMINISTRATIVE INFORMATION

This task was performed for the Space and Naval Warfare Systems
Command. Washington. DC 20362 Hughes Research Laboratories performed
under contract N66001-83-C-0395 with the guidance of K Bromley, Naval Ocean
Systems Center. Code 741, San Diego. CA 92152-5000.

Released by Under authority of
K Bromley. Head R.L. Petty. Head
Signal Processing Branch Electromagnetic Systems

and Technology Division

LH

UNCLASSIFIED

REPORT DOCUMENTATION PAGE

[~7a AEPORY SECURITY CLASSIRCATION
UNCLASSIFIED

28 SECURITY CLASSIFICATION AUTHORITY

25 DECLASSIFICATION. DOWNGRADING SCHEDWLE

3 OISTRIBUTION, AVARABILITY OF REPORT

Approved for public rele- .- distri* n unlimited.

4 PEAFORMING DRGANIZATION REPORT NUMBER(S)

§ MONITORING ORGANIZATION ¢ Nt NUMBERS)

NOSCCR 312

60 OFFICE SYMBOL
¥ sopbcadiel

6a NAME OF PERFORMING ORGANIZATION

Hughes Research Laboratories

78 NAME OF MONITORING ORGANIZATION

Naval Ocean Systems Center

8c. ADDRESS (Cay. Stae anc 2P Codes

3011 Malibu Canyon Road
Malibu, CA 90265

To ADDRESS (Caty, State and 2iP Code/

Code 741
San Diego, CA 92152-5000

Ba NAME OF FUNDING . SPONSORING ORGANIZATION b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTEICATION NUMBER
1 appbcabial
Space and Naval Wartare Systems Command S&NWE61R N66001-83-C-0395
B< ADORESS (Cry State ond TP Coder 70. SOURCE OF FUNDING NUMBERS
PROGRAM ELEMENT NO PROJECT NO TASK NO Agency
Accession
Washington, DC 20362 61153N XR02102 DN305 129
11 TITLE Securny C.
VLSI FLOATING POINT CHIP DESIGN STUDY
(2 PERSONAL AUTHORS.
J.G. Nash
13a TYPE OF REFORY 130 TIME COVERED 14 DATE OF REPORT (Yeer, Month. Day/ 15 PAGE COUNT
Final caom _S¢p 83 1o Nov 84 November 1985

16 SUPPLEMENTARY NOTATION

This study is a continuation of work reported in NOSC CR 232 (March 1984).

17 COSATI CODES

FIELD GAOUP SUB-GROUP

18 SUBJECT TERMS /Comtanue on reverse A necessery and sdentily by biock nurmber;

Very large scale integration (VLSI)
Floating point chip design

19 ABSTRALT iContanwe on reverss if necessery end sdentdy by biock number|

algonthms fer performing square root.

Thus report describes techniques for very large scale integration (VLSI) implementation of arithmetic algorithms. Thg report
describes an algorithm for performing area-time efficient division, on-line techniques for performing bit-serial calculations, and iterative

20 DISTMBUTION AVAILABILITY OF ABSTRACT

[usciassisien unumTeo {(X) same as am {7 onc usens

77 ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

P ——————————
720 NAME OF NESPONSIBLE INDIVIDUAL
K. Bromiey

226 TELEPHONE (inchsde Aree Code:

(619) 225-7028

22c OFFICE SYMBOL
Code 741

DD FORM 1473, 84 JAN

83 APR EDIMON MAY BE USED UNTIL EXHAUSTED
ALL OTHER EDIMONS ARE OBSOLETE

UNCLASSIFIED
SECURTTY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED
SECUMTY CLASSIFICATION OF THIS PAGE (When Date Bntered)

DD FORM 1473, 84 JAN
UNCLASSIFIL D

SECURITY CLASSIFICATION OF THIS PAGE(hen Data Eatered)

1.0

2.0

H b

O WWww

N =

AL bALDSL
OCONdOON bW

TABLE OF CONTENTS
Introduction and Summary
Division .

Introduction .. e
Recursive Division Algorithm With Prediction
2.1 Introduction ..
.2.2 Range Transformation
2.3 DLivision Recursion e e

NN MR-

Impiementing the SVD Computation
Using On-Line Arithmetic i

Introduction .. e
On-1ine impiementation of the SVD algorithm
Processor organization
Remarks

H W N

Algorithms for Square Root & Tangent to Cosine
oMV rS I ON . L

Introduction ... e
Square root by polynomial approximation and iterative
COrreCh ION L e e
The reciprocal square root
Algorithm "pythag"
Tangent to cosine CONVErsSiONt .
Tar® to cosine CONVersion
Summary of Previous Algorithms
Est i mated run times

"Best" aligorithm for computing (x24;25172;'ﬁH9#0T5:::i:::::

LIST OF APPENDICES

Append i« A Division Schemes with Simplified Selection Rules

and Prediction of Quotient Digitsiiiviiiiiinnnnnn.
Apperdix B Radi»-4 Division with Range Transformation.............
Appendix C: Range Transformation of the Divisorciuin,

10
10
12
18

VLSI FLOATING POINT CHIP DESIGN STUDY

1.0 In*roduction and Summary
This report summarizes the results of a study undertaken by
the Hughes Research Laboratories to investigate techniques for
VLSI implementations of arithmetic algorithms. While most
attention in the VLSI era has gone to activities related to the
shr nking of design rules and the introduction of sophisticated !
architectures, there is still a large contribution that is ‘
ava lable from the use of novel! algorithms for performing the
arithmetic computations that underlie al! computations. This is
evident from the variety of new arithmetic elements seen in the
newest generation of microprocessors, digital signal processing
chips, special function arithmetic chips (e.g., multiplier,
div der), and co-processor chips.

Within the domain of signal processing there are two

ar.tnmet < operations of particular importance, division and
sauare roct. These functions are associated with such algorithms
as s.ngutar value decompositions (SVD), Givens rotations, and
var: o.s other orthogonal transformations. In this report we
investigate techniques for performing division and square root
trat are suitable for VLSI implementation.

Ir Section 2 we describe an algorithm for performing area-
time efficient division based on a serial/paralle! organization.
We feel that this circuit considerably advances the state-of-art
because ocur study shows that we can compute at rates as fast as
spec.al hardwired paraliel circuits that use an order of
magritude more area. Jhese conclusions are based on the
compar i ison of division speed capabilities shown in Tabie 1 for

1

Table 1. Comparison of Division Capabilities

| |] PRECISION | |
| CHIP | SPEED (usec) | (BITS) | COMMENTS |
z | | } :
|Intel 8087 { 39 |64 (Fit. Pt.) |280 x 280 mil2]
| (Stave Processor) | | I (nMOS) |
l I | I l
| l | I l
INS 16081 | 8.9 132 (Fix Pt.) | nMOS |
| (Stave Processor) |] | f
| | T |
{HP | 1.2 - 2.4 |64 (Fit. Pt.) | CMOS/SOS |
[(single "+" chip | [1210 'x 290 mi 17|
, % | :
|

[We tek | 5 - 10 24 (Fit. Pt.) |300 x 290 Mult|
1 (2 chip set) | [| 305 x 225 ALU |
i [1 |
! [| |
1 G9000 | 4.9 116 (Fix Pt.) | |
| Processor [| | |
a — J, ',
| HUGHES | 0.88 132 (Fix Pt.) |34 50x150 mi!?]
| | 1 1 |
monotithic processor chips. Here, our calculations assumed an

NMOS 3-micron technology, which is typical of that used in
present day commercial semiconductor products. Unfortunately,
there are not a lot of special purpose divider chips on the
marvet with which to make comparisons. Considering that our
circuit consumes a minimal amount of area because of its serial-
parallel organization (shift-and-subtract), it is cleariy much
more area-time efficient than any of the other circuits For

eramp e, the Hewlett Packard circuilt consumes an entire chip

fabout 35,000 transistors) yet 1< half as fast We have been
ass . sted in this activity by Prof Miios Ercegovac of UCLA, who

perfcrmed the various algorithmic i1nvestigations.

2

In Section 3 we describe "on-line" techniques for bit-serial
calculations. The advantage of this approach is that parallelism

is achieved by overlapping arithmetic operations at the digit

leve! and the associated feature that communication |lines are
needed for only one digit for each operand mantissa. QOur
investigation of the on-|ine apprcach was based on the numerical

requirements imposed by a rea .st.c algocrithm, singular value
decomposition (SVD) The res. ts cf this study, carried out by
Pau: Tu of UCLA, indicate trat moaular, efficient on-line
approaches to complex algor thms are promising. However, more
researcn work is necessary before ceta led implementations are
possible. In particular it wiil be necessary to determine how to
dea! with variable delays introduced by certain floating point
operations, such as addition and subtraction. It was also
conc'!'uded that fixed point operations would be difficult for
compiex on-line calculations because of the requirement that all
operands fall within a certain range, which would be difficult to
monitor during the course of the calculation.

Finally, in Section 4 we describe a variety of iterative
algorithms for calculating the square root of a number 32+b2,
whicn is a very important calculation due to the need for
obtaining the sines and cosines used in Givens’ rotations. This

approach, using suitable approximations for the first estimate,

can i fact be quite fast. We have looked at several numericai
square root algorithms, all of which use some form of polynomial
appros -mation to the first result. It was important to use

vechnigues that avoided loss of precision in the squaring of a
and b, yet at the same time did not invoke the use of conditional

3

branching. We found that by using a 4th order polynomial
approximation, only one iteration was needed to provide
sufficient accuracy for most calculations. The total time to
obtain a sin or cos function this way was equivalent to

approximately 13 multiplies.

2.0 Division
2.1 Introduction

As mentioned earlier, division is a very important operation
in signal processing because it is found in so many of the

various matrix factorization techniques, as for example Gaussian

e’ imination. Even though only a smal!l fraction of the total
operatic - associated with any given algorithm might involve
dirvisior, it still must be given considerable attention becaus:

the civision (or square root) operations can "bottleneck" an
ent . re zomputation when concurrent architectures are in use. An
exampie of this s the systolic array which triangularizes a
ma<~- x. In such an array only a single border cell or column ot
pcraer cellis might be computing divisions; however, since all
processing elements (PEs) are operating in lock step, the slowest
PE will determine the overall cycie time. What is needed are
divisicn and square root operations to proceed at the
mu't.pciication rate, which is generally the rate Iimiting factor
‘n a: ! tne other cells If this were the case the system would
be mar mally efficient.

Tre basic problem with division is that it is not possible to
L cet ~e it n the same way as can be done with multipiication.
Tr.s s due tc the inabil ty to vnow what the guotient digits are
ahead of time. With multiplication the multiplier bits are known
aread cf time so that they can be processed at any convenient
Yime As a result, our approach will require that we simplify
e auctient selection process such that 1t 's sufficiently fast

t-a*” ppelining would not speed '* up even 1 f it were available.

Qur divider circuit has been designed in such a way that it

f ts into the overal!l framework provided by our Multiplication
Or ented Processor (MOP) chip1 which already contains a fast
muttiplization circuit. QOur ch.p design approach is
characterized by a rumber of features. First, all arithmetic
€ rcu'ts are serial/paralie! S/P) (e.g., shift-and-add types)
thrat use radix-4 arithmet:c ard have their own set of dedicated,
- gn speed clocks. The S/P organization saves a large amount of
space compared to a fully parallel design, and the high speed

ccvs and radix-4 operation are intended to prevent loss in
speed compared to the pure parallel approach. In addition, all
2.~ ar.thmetic algorithms are intended to be based on some form
c¢ zarry-save type scheme in order to eliminate carry propagation
ac~oss the full precision of the word. Each arithmetic circuit
~as t©s own set of dedicated control hardware, so that ali the
crcg-ammer s required to do is supply the arithmetic unit with
the zporopriate operands. The hi:gh speed clocks are synchronized

w *n respect to the siower system clocks which are responsible

*or transferring data on chip and between chips We expect there
w: ' pe 4 to 8 high speed clock cycles per slower system cycle.
At ziocks are of the two-phase, non-overlapping variety.

Trere are two basic approaches to performing division in a
conventional way. The iterative Or successive approximation
techniques use a fast multip!ier to achieve gquadratic convergence

~ates Often one can use a look~up table to provide a good first

1 J G Nash and K. Petrcozolin, "VLSI Implementation of a2 Linear
Systolic Array," presented at ICASSP, March 1985, Tampa,
Fiorida.

estimate. For every i1teration after that the precision of the
result doubies. While this technique is widely used, 1t does
exact a large price in terms of hardware. For this reason it 1s
usea primariiy in applications where large precision is required
and co2st or chip area is not the most important criterion. The
other popular approach is based on recursive techniques in which
prec s on s proportional to the number of recursion cycles. We
fee that this s the best approach for us because it lends.
1tse ¥ ©vo very area-time-efficient VLSI implementation and
pecause we feel that we can obtain division rates comparable to
our muitiply times, which 1s not the case for the iterative
wecrr - que. For concurrent architectures the issue of integration
s 2 very important one because large numbers of PEs are required
tc az-.eve high throughputs. If each PE were excessively
comp ex, then the overall system could become unwielidy.

Ie 2dd tion, our relatively simple S/P bit-slice arithmetic
ur ts provide an important degree of system modularity in that 1t

'S @ very s.mple task to configure a PE with a variety of options

ngo¥ar” 3s arithmet:c units and memory are concerned. This is
~portant because we feel that it s unlike!, that a single chip
type w ' satisfy a variety of system requirements. In other

words each corcurrent system implementation might be buitt from
the same bas c rrip modules (multipliers, dividers, adders,

registers, etc, but the actuail PEs would be different

he Fa.e oOoOxed at tnree cifferent recurs:ve d viSiOn
. 2 . - 3 . .
2 gor.thms, the radix-2° and ~acix-4 SRT,” and tne prediction
4 56 : . . .
~ezhnique of Ercegovac. The SRT approaches are the pas:'c

no~-restoring shift-and-subtrac+ techni ques. Tab'e 2 presents a

compar son of these approaches n terms of 1mportant parameters

and ¥ gures of merit. Here the S/P multipliier I1s used as a bas:s
for comparison. As can be seen, the radix-2 SRT approach is the
s:mp est, but s the slowest On the other hand the prediction
Table omperison of division algorithms (r = number of bits) in terms of important VLSI
ca~ameters Here (PA refers to fu!! precisior 32-b:t add t mes to propagate carry

Re ' at ve area est mates are approx mate at best

TONATE T 17 CTPR T DESIGN T [FELATIVET 32-BI7 RELATIVE |
DELAYS, # {CONVERSTION 1 COMPLEXTITY RELAYIVE (DIVISIONG DIVISION JAREA-TIME]
ALGOPITHM IRECURSION|RECURSIONS |REQUIRED? | 1 = MULT | AREA | TIME |TIME ‘msec)| PRODUCT |
I - - i | o | |
i i i | | T | 1 !
SRT ! 12 | n | Ne : 1.5 o1t 'o18n] 1.9 i 2.1 |
RPad «-2 : i | i I | f] !
l |]] | 1 | |
! — T r I I I i
SRT . 14 (.02 | No , 2.8 Yoo a { Tn \ 1.3) 2R ;
Radi«-4 : I ‘ | ! |] {
I P 4 | ; | |
‘ ~ANGE ! T ‘ T T T T
PREDIL- XF2PW 4 | 5 | Yes ; 40 i2S I 3ne8 i 2.88 \ 2 <
TICN WETLURT T B i i | <CPA } i i
TITN & | nf2 | No : | ! ! B '
| ‘ T : T T | T T '
MULTI- ‘ 5 ! 2 | ‘es | i@ [1@ 18af2 +3 | { B4
PLTI AT TN . i i i | | +CPA } i | 1
— i | N S 4 !
\
2 J &t Pzocertson, "A New Ciass of Digital Divi s or Mesnhods,"
ittt Trars Elect. Comep. ., EC-7, pp 218-222, Sept 1958
2 0 E

Ropertson, "Methods of Selection of Quotiert D.g:ts
U.- ng3 Dig ral Divisizn, " Dept (Comp. Scrience, Un.v Iliinors,
F e 585, 1965

4 M [Ercreg-varn. "A Higher Radix Division with Simpg e
e ezt on 2t (uotient Digits " Proc 6th Zympos,um on Computer
A- <rmet, - 194583

s v Er-eazi.a7 ara Lang, "Kag »-4 Divisicn witr Range
Tracstormat - Y Lrput oshed mancscraipt, August 1984

~ M U Ercegreac ama T Larg, "Fange Transformat or cof the
U o« sor," uropublished manuscript, [lecember 1984

technique is the most complex, but has the shortest division
time. All have approximately the same area-time product. Since
a basic requirement i1s that division and multiplication times be
as balanced as possible, we tend to weight the absolute division
time more highly than area-time product. We have assumed for
purposes of comparison that the carry propagate adder (CPA) time

1s 125 nSec (8 MHz) and gate delays are 6 nsec.

2. 2 Recursive Division Algorithm With Prediction

2.2.1 Introduction

In this section we describe the division algorithm and its
impliementation in terms of NMOS circuitry. More detailed
description is provided in Appendices A - C containing reports by
Prof Milos Ercegovac.

The essential requirement necessary for a fast recursive
divider 's a fast recursion time. This speed is usually degraded
by the time required to perform the selection of the quotient
digit for a particular recursion For radix-2 operation this is
nct too difficult, but for radix-4 approaches this becomes more
compiex, resulting 1n long loop times. Typically, there are

three basic steps in each recursion,

R{i+1] = r(R[1] - in) Y

where X is the divisor, R[i] is the partial remainder of the th

step, R[0]=Y s the dividend, q. 1s a digit of the quoti ent, and

r s tre radix. Here the guotient digits must satisfy
pla <Lp,p being digit set max mum. These steps are |isted
beicw:
1. Form in
2. Subtract and shift to obtain R[i+1]
3 Use guotient digit selection process to obta n ;.1 from
R[{i+1]

The pred:ction algorithm uses two techniques to speed up the
set of operations described above First, a new quotient dig:t
selection procedure is introduced that reguires only truncation

10

or rounding of a |imited precision partial remainder to obtain
g.. Second, the quotient digit is obtained by avoiding explicit

eva uation of (1); rather, it is obtained from the expression

A, ,q = round (r(a[i] - qi))

where R{1] is the low precision, non-redundant representation of

the remainder. Here "round" means that q; .1 is selected from a
rounded and truncated version of the result. Since a, is simply
an integer, the subtraction i1s simple. Consequently, the maximum

step time for the recurs.on icop is given by the largest delay
time assocrated with either the quotient selection process or the
carry-save evaluation of the new partial remainder. In other
words there are two separate operations occurring at the same

time, sc the step time 1s

T =max(t_ + ¢t + t vt o+ t + t
a q !

where
t, = time for assimiiation of R[i] (carry propagation,
~6 bits)
tq = time to subtract and round
ty = time to select divisor mulitiple
tcsz time for carry-save subtraction
t, = time to load registers.
Ir order to perform the algorithm in this way, it must be

d.v deag :nto Lwo parts, range transformation and recursion.
F.-st, for the simple gquotient digit selection process to work,
't s necessary that the dividend X be transformed intc a range

11

(1-a) <X <@ +a)

6 to 2_9 and X' s the

where @ is a number on the order of 2
vransformed divisor. In the remainder of this section we
describe the two basic parts of the overall algorithm, with

particular emphasis on circuit implementation. More detailed

discussion is provided in Appendix A-C.

2.2.2 Range Transformation
We have looked at several approaches to performing range
transformation (Appendix A-C). In this section we discuss the
cne that appears most promising, that based on reciprocal
approximation by power series.
The problem here is to compute a transformed division Xx* that
sat . sf:es the relation IX‘ ~ 1| < a. The reciprocal

apprcx mation approach finds a multiplier M such that x* = XM, so

that this relation :s satisfied. To do this we divide the
giv:sor X into two parts, X1 and X2, and set
-k
d = Xl + 2 X2
wherae
Xl = (_le2 L Xk+1)
Xo = (0.X o o o . X))

Then 2 simple series approximation gives

R-1/D=R. - 2" RZ x_ - e (2)

12

where

§1 is 1/X1 truncated to u bits
ﬁ% s (Rl)2 truncated to s bits
;2 s X2 truncated to v bits

e, is the truncation error.

Note that our definition of X1 assumes that it is normalized
so that the most significant bit is a "1." Since we are using
fixed point arithmetic, this implies that a shifter network will
be required as a front end to the entire divider to perform this
operation. This network wil! not be described here since details
are already given in a previous report.

The values of ﬁl and ﬁf can be obtained from a PLA with Xl as
ar nput In Table 3, values of ﬁl and ﬁf are given for the
cnc:ce of truncation parameters, k=5, t=9, u=3, s=3, and v=3.
Once tnese have been obtained Equation (2) can be evaluated.

Then we can perform the multipiication XR to yield X', since R is
an appropriately accurate representation of 1/X. This
muitip!t cation will be performed us ng the same carry-save adder

that s reauired 1n the second, recurs:on step

7 J G Nash and G. R Nudd, "Des an Study of Flcating Pcint
Systotic VLZI Chip," NOSC Finatl Report, Contract
N

»>. N66001-82-M-4120, September 1983

13

Table 3. Values of Rl and Rf obtained from truncated input Xl‘

X, R R?
XXX XKk | 2071222 ¥ ZZ62 728 | WoW1WaW3
1.00000 0.11111111 0.111
1.00001 0.11111000 0.111
1.00010 0.11110000 0.111
1.00011 0.11101010 0.110
1.00100 0.11100011 0.110
1.00101 0.11011101 0.101
1.00110 0.11010111 0.101
1.00111 0.11010010 0.101
1.01000 0.11001100 0.100
1.01001 0.11000111 0.100
1.01010 0.11000011 0.100
1.01011 0.10111110 0.100
1.01100 0.10111010 0.011
1.01101 0.10110110 0.011
1.01110 0.10110010 0.011
1.01111 0.10101110 0.011
1.10000 0.10101010 0.011
1.10001 0.10100111 0.011
1.10010 0.10100011 0.011
1.10011 0.10100000 0.011
1.10100 0.10011101 0.010
1.10101 0.10011010 0.010
1.10110 0.10010111 0.010
1.10111 0.10010100 0.010
1.11000 0.10010010 0.010
1.11001 0.10001111 0.010
1.11010 0.10001101 0.010
1.11011 0.10001010 0.010
1.11100 0.10001000 0.010
1.11101 0.10000110 0.010
1.11110 0.10000100 0.010
1.11111 0.10000010 0.010

Evaluation of equation (2) involves a 3 x 3 multiplication

(ﬁ? X2), the result of which is shifted by four digits and added

to Rl’ It appears easier, rather than to complement this result
and add, to first complement ﬁl and later complement the final
result. With this scheme we can begin to obtain the radix-4
multiplier digits of R immediately since there is no addition

being performed in these bit positions, as shown in Figure 1.

This is convenient since we are going to perform the

COMPLEMENT
T I | | l 1
pos?now‘ {0 o2 3 4 5 , 6 71 8 9 10 1
| | ! 1
! | : : : , l
aN
Ry { 0 Z1:22 Z3:24 %5 % %7, %8 I
! l | | I
: : | 1 p]gl 029 (039)
| ! l | 1 \
A A | | l | | DISCARD
™ X2 | | | | P18 P28 | Pag
' l : [,
: | P71 Py Py
f ! !
] I & 4| l
[' | |
R R, | R R, | R, R R. R, | R Ry |
R{Rry A Rz PR3 Ry Rg 1 Rg Ry Ry Rg
|
! I ! |
RECODED | | ‘ | |
MULTIPLIER { Mg | My | My | My | Mg i
iRADIX-4) |]] i I
Pik =% *k
Figure 1. Functional description of the evaluation required in

Equation (2).
multiplication beginning with the most significant digit of R.
This is very important because we can then begin our range
transformation aigorithm before compietion of the evaluation
of (2). Expressions of the recoded multiplier bits in terms of

15

tne variabies in Figure 1 are given in Appendix C. These involve
simple circuits, typically with two-gate delays.

Since we will be using the same carry-save adder for division
recursion as for the multiplication required in (2), and since we
wil be performing the multiplication most significant bit first,
some of the product will be shifted off the left end of the
circuit (divider circuits shift left). However, since the first
7 bits of X* are either a2 "0" or a "1," only 2 couple of bits
wili be necessary to determine x*.

A pbilock diagram of the range transformation circuit is shown

'~ F.gure 2. The PLA begins its operation after a signal to load

t~e givider circuit, "LD DIV." From this point on in the control
section, up to the generation of the "M" values, all iogic is
combinatorial. There is a muitiplexing shifter register that

rurns of f the high speed clocks, ¢1 and ¢2, which supplies the
recoged multiplier bits to the buffer driver ("BUF") controlling
trne seiecticn of the appropriate value of X (-2X, -X, 0, X, 2X)

¢ g0 %o the carry-save adder. After the "LD DIV" signal has

t

gorne 1ow, this multiplexer starts with M_1 = 0 as an input. A

~

circutt for determination of RQ is given in Appendix C,

A~
1x2
Figure 2a, which is built from s mple full adders. The PLA is a
straightforward 5-input, 10-output structure, with an estimated 5
gate delays associated with it. We have performed a first order
anaiysis of it using a standard AND-OR plane approach Using an
es* ma*te of approximately 66 XQ microns per cell, where A 1s one-
~21f tre feature size 'n micrors, we estimate that the entire
stvructure would consume an 11 x 11 mul? area . Since the input to
tre PLA comes from high capacitance bus |ines, there would be no

need for large buffer drivers as input to the PLA.

16

~ ! —L ' ¥ 32 X 32
R
1 LD DIV

26 - Zg PLA l _l
X Y
2 | <
M_; - |
—
~ > BUF [t X
b4 Mq. M
R? X, oM | 3 |]
X | -
C L I
—5__’, - o “
——
s - Rg | CARRY-SAVE
ADDER
9 % I 'j
1]
| { ! %
l L Ln
| ' I—” LD CPA
| | CARRY PROPAGATE
ADDER (CPA)
CONTROL SECTION €=— | — BIT SLICE ARRAY
Figure 2. Block diagram of range transformation circuit.

In Table 4 we estimate the number of gate delays associated
with the generation of M.. Assuming a 32-MHz clock, all values

of n should be availabie when required.

17

Table 4 Estimate of the number of gate detlays from

tvransformation initiation untit generation of Mi' Here
we assume a 32-MHz clock and 6-nsec gate delays
(3 NMOS) .

Availability of M |

: | | l
{ | | After Start |Elapsed|
| | | [Time | Time |
|Ciock Cycle |Operation|In Gate Delays| (nsec) | (nsec) | Operation
l { | | | |
| 1 | PLA | 5 | 31 | 30 IMult M_1=O
f 2 | Gen MO (5 1/2 | 33 | 63 [Mult MO
| 3 | Gen M1 | 15 1/2 [93 | 94 IMult M1
[4 | Gen M2 | 15 1/2 | 93 | 125 IMult M2
| 5 | Gen M3 | 13 1/2 | 81 | 156 {Mult M3
| S} | Gen M4 | 11 1/2 | 69 | 187 IMult My
? L | | | 1
After generation of X‘, which is now 1n carry-save form, ¢
s necessary to send it to the CPA, where it wili be transformed

into non-redundant form for use in the recursion step next.

2.2.3 Division Recursion

The basic idea in speeding up the recursion operation s
to use a2 redundant number representation for the quotient digits
sO that a quotient digit can be seiected at each step using a
.m. ted precision est mate of the partial remainder. This
‘mg i es that it 1s not necessary to perform a full precision
subtt~action at each recursion step, thus avoiding the time
consuming carry-propagation across the entire word. Instead a
carry-save approach can be used along with a small CPA circuit in

the most significant bits (typically 6) to determine the | imited

prec.s.on estimate of the partial remainder One can use this
approachk and obtain CH from
a,,; = round (r(R[1] - a «™)) (3)

18

wnere R[] is a2 |limited precis.on estimate of the partial

remainder. As mentioned

is compiicated in that it requires the evaluation of qix‘.

in the

introduction, using this approach

can sacrifice additional precis:on and compute SHPY from the

express . on

sl T

White 74:

the ~ange transformation due
Tne vatue of a

“rese est . mates.

w %" tre choice of precision

f. .+ n~ Appendix B.

express on

ts easier to evaluate,

One
round (r{R[i] - qz)) (4)
it requires more complexity 1n
to a decreased value of a.
is determined by the degree of precision in

There are var,ous tradeoffs here associated

in R[i], which are explained more

These tradecffs can be represented by the

1 2
a < ~CISS) (1 (r-1) p)
wrere 0 s a measure of precision of R[i] and g, in pregicting
Iy =T
Ir(R[W] - a,; - a, 41 <8

—~

‘F_s, reducing the precision

of R (corresponding to simp'er,

faster ¢ rcuitry) implies an increase in f§ or 2 decrease in Q.
Tre sma er value of a means additional precision required in the
~a3-3e *-a~sformat.on process described 1n Section 2.2. Typically
vtre sa ue =f a would be 2_8 Lo 2'9

he rase looked at a variety of pasic circuits for
Za 2. 2% ons based or (4) Here we describe what we consider the

19

most efficient implementation of these. The basic scheme is
iitustrated in Figure 3, which shows the flow of information
through the divider and Figure 4, which provides a more circuit
oriented representaticen. In Figure 3 it can be seen that there

are two parallel paths of computation producing the two results

a: g and R{i+1]. The set of computations to produce q,,; are
1. Propagate (ass'milate) carry to produce ﬁ[}]
2. Subtract g, and shift to produce r(a[i] - qi)
3. Round result to generate I
The coperations in the other path are as follows:
1. Select appropriate value of X*(in*) as input to
CSA
2. Perform carry-save subtraction to yield R[i+1].

A © zzr diagram of the operations required for the 9.1 path are
1tlustrated n Figure 5. The CPA addition can be carried out

us:ng 2 "relay-type" adder as shown in Figures 6 and 7. This

ct

yoe =% adder is relfatively simple, yet carry propagation is fast

(V]

‘nce carry information 's propagated by tranmsmission gates.
(Details on this adder are provided in Ref. [7].) The carry-in
input %c this CPA requires a small amount of logic as described

in Agperdir B

20

—
0D |e—

- — ' - r —
a - x* J i ! R
9 R
-
$—— SELECT
R 4
(1
SUBTRACT | | CSA —
AND : —
ROUND ;
| ASSIM
G|+1 I
Zay
R{+11 R{i+1)
! f
qi¢1 | 1
j) I .
| j l
G X i |
- 1 | ‘
i !
[I
l Riie1 .
! R+t |
I
Figure 3. Functional block diagram of recursion operati on data

filow

21

] —L- T .
Q I
™ converT DRIVER
[
DISABLE :
}
o, F__o7

5

3
! ’ ! £ SELECT x°
. q {
i !__r__lt > ’ ’l DRIVERS __..7;’;
l : ! ARRAY

|
?
s
g SELECTION va >—
: 1 i ‘ FAST
—_— i ADDER S
(ASSIMILATOR) 4 -
7
‘-_Lrj 7 8
©2
Figure 4 Basic circuit impiementation of recursi on control
rardware.
-2 1 0 } ? 3 4 5
r i T]
- [N R U B : g
T i T ! : ,[-1 ! i
~amay ! ! | : ; w |
{] | i] j _J
vV VY
| L C'N .
! cPA ¢———i ag |
. ; -
RIR IR IR
» SUBTRACT
' ROUND
i
F oz.-2 % Bincw diagrams ~f set ~f cperat ors fead i ng to

gene~3tL (on ot n
- o+]

A 8 | A®B
I e R
A o o]o 1
1 1 1
= r—
A(®B 0 1 0
A 1 f 1 0 0
B

Figure 6. Exclusive OR circuit.

_— —
K K
Py 1+1 P '
‘_r_'——4 & 1 4
('i+1 C‘
K, = A +B
P = A(®SB
s, = POC,

Figure 7. Carry propagate adder used to obtain R.

Afrer assimilation, it is necessary to do subtraction of a.,
followed by sh:fting and rounding. If we set
P = 4 i - .‘ =) =)
(R[] q') (p_2r P__ly POI Pl) and q (Q_Qv Q_ll QO) then

the subtraction corresponds to obtaining p_ trom

2

Po = Ryli]l @ Qy[i]
23

ard the remainder of the P values are simply obtained by shifting

the R{i] or

P_y. Por P = Ry, Ry, Ry)

The guotient digit is obtained by rounding P if it is smaller

than 2 and by the integer part of P if it is equal to or larger

than 2. This corresponds to the following expressions for 9,1
as

Q_,0i+1] = P_,(R, + Ry + Ry

G_,[i+1] = P_R. + RR, + RRy + RRR,

Qu[i+11 = (P_, + Ry) (P_o+R.) (Ry+Ry) (R, + Ry,
wrere "’" indicates complement. These expressions can be mapped

'mtc the circuits shown in Figure 8a-8c, where we have rewritten
scre =f the switching expressions for more efficient circuit
rrr . ementation As can be seen

, the subtraction and rounding can

ce ce-formed in about two gate delays

24

F f "O__z [I"‘”

Ry = Py "”.:

= Q' o AN A
-2 [l-v]]~P_2 +R R2R

1 3

(s}

> Q_, [i+1]
Al
~ | ~ ~ | R
R, — Ry — R, = ‘—i
N\
Ry —
ol Fay
P, — R R
-2 2‘% 3"{ 2
Ry
= . AT AN A A
Q, [v+1] -P_2R14 R1R2+ R1R3+R1R2R3
1)
’Qo(l"“]

ic)

F gure 8. C(Circuits and logic expressions for calculation of

quotient digit A, = (Q_Z, O—l' QO)-

25

The second parallel computation path involves the selection
of the appropriate value of x* (e.qg., in‘) to add into the carry
save adder in the bit slice array. This involves the use of a
decoder that takes as input a. and then drives one of 5 |ines,
which are running across the bit-slice array. These |ines are
connected to multiplexers in each bit slice which select -2X, -X,
0, X, or 2X as shown in Figure 9. The full adder cell shown in
Figure 9 can be built as shown in Figure 10, a circuit presently
used in our S/P multiplier. We estimate that the total gate
delay through this second computational path to be about 6 gate
delays, 4 for the q}X* operation and 2 for the full adder

operation.

26

BUS B ’r_.LDx’

. BUS A’

I 2x

x|

] !I LoY
c s T STORE
4 t ‘ Y
¢‘ L“ Ll‘ BUS A
2 I_H I—“
FULL ADDER)
[!
| DRIVER ' DRIVER
L | !
C,h I s
+N Cour So#r 'tN
INTERCONNECTION NETWORK
Figure 9. Divider bit-slice cell containing x* register,
multiplexer, full adder and carry, sum register. Here
clock superscripts f and s refer to fast and slow
clocks.

27

Voo
...{ ‘*[

c, ___I:ﬁ._. - SUM
- L —
c _J:LL Yoo 4 :”—

, T }__
¢, ———r"l—L 4 s CARRY

- —

Figure 10. Tentative design of carry-save adder for use in
divider bit-slice. Inputs to this cell are sum bit,
Si' carry bit Ci’ and divisor b1t Xi.

Ir Figure 9 we see that the value of X* is taken from Bus B
ard caded into a {atch. This result comes from the CPA after
tne range transformation. The necessity of performing a CPA to
b-cduze a non-redundant X is an important consideration because
th.s is a reiatively slow operation. That is, after range
~ransformation, the carry-save value of X* must be transferred to
«ne CPA by the slower system clocks, followed by another transfer
cack %*o the div.der after the actua! CPA s required. As shown
-~ Tavie 5, whizh tabulates the overal! divisicn speed in terms

2% the number of high speed clock cycles, assuming the high speed

ciccks are four times faster than the slow speed clocks, this

28

round trip operation to get a non-redundant x* is considerably
time consuming. For this reason it would probably be more
reasonable to include a dedicated CPA internal to the divider to
avo.d this delay. Although we have not achieved our goa! of
equalizing multiply and division rates, Table 5 indicates that
the rates are comparable. GSome time is saved in the division
operation because the quotient digits are converted back to non-
redundant form as they are created, so that a final CPA is not

necessary as with the multiplier.

Tatie 5. Division and multiplication times assuming 32 MHz and
8 MHz arithmetic and system ciocks.

Number 32 MHz Clock Cycles

| l
| Division: | External CPA Internal CPA |
l | |
f Transformation | 5 | 6 |
l Transfer to CPA | 4 | - |
! CPA Operation | 4 i 4 |
E Return from CPA | 4 | - |
| Recursion | 16 | 16 |
| l | |
! Totai Cycles [34 | 26 I
| Tzral Time | 1.1 pysec | 880 nsec |
| | | l
| | | |
| My % . pilication: | | I
! | l |
{ Recursion | 18 l - l
i CPA Operation | 4 | ~ |
| I | !
i Total Cycles | 22 | - |
; Total Time | 730 nsec | - |
! | { l

O-e .ssue tha%t has ncot been discussed i1s that associated with
czcrvers.on of quotient digits to non-redundant form We expect
trat tr: s <an be done in an "on-the-fly" manner, so that the
f ra Aauntient would be available immediately after finishing the

29

recurs on ioops. We also expect that as part of this operation
we can perform the necessary corrections associated with the
initial normalization of X required before beginning the range
transformation operation

Based on the previous discussions we estimate that the total
number of gate delays per recursion will be approximately six.
Assuming a 3-micron NMOS technology, corresponding to
approximately 5 nsec per gate delay, the clock speed of the
aritnmetic units would be approximately 32 MHz. The
corresponding sliow or system clocks would then operate at 8 MHz
Us:ng these values we estimate the divider speed for 32-bit
fixed-point operation would be 880 nsec. We compare this speed
*C data available on other, commercially available circuits in
Tabie 1. For the purposes of comparison we note that the Hewlett
Pacrard circuit is a dedicated divider chip based on a fully
parailel, recursive mplementation. As can be seen, our
tentat ve design compares very favorabiy in terms of speed with
al the cther multiplier circuits. However, from the standpoint
<% area-t me product, which is more approprtate for VLSI
tmp ementation, the comparison is ever more favorable

Th s divider design is very efficient in its usage of area
because the range transformation and recursion steps share the
Same carry-save adder. This adder circuit will be comparable in
Size to that used in our S/P multiplier because the range
“~arsformat or and recursion steps share the same carry-save
aader Compared to cur S/P mult iplier, the divider wi!li have
@x%ra circu.try associated with the frant-end normaliz ng circuit
and a register to store the gquotient digits as they are

30

generated. In addition, more area will be required outside the
bit-slice array for control operations. We estimate that
approximately 150 x 50 mil2 area would be necessary for a

3-u NMOS design of this circuit.

31

3 0 Impiementing the SVD Computation Using On-Line Arithmetic

3 1 Introduction

On-line algorithms perform arithmetic operations in a digit-
serial fashion. The operands of a computation come in one digit
at a2 time, with the most significant digit first. After a small
number of input digits have arrived, the most significant digit
of the resuit is generated, and thereafter one more digit of the
"esuit s generated in each time step. On-line algorithms for
add:tion/subtraction, muitipiication, division and square root
wperat.ons have been developed and simulated by Watanuki,8

Ragraverdra and Ercegovac,9 Trivedi and Erce90vaclo and

Ov 2poz . a and Erce90vac,11

0-- 'ne arithmeti: algorithms have two very attractive
fezt.-es The first feature is that paralielism is achieved by
over a2pp.ng arithmetic operations at the digit level. A short

1e 2y afwer the first digits of the operands have arrived, the

a0
(-
w
o
q
x

Watanuki, "Floating-point on-line arithmetic for highly
titcurent digit-serial computation: application to mesh

£ 2o ems," Report No (SD810529, Computer Science Dept . UCLA,
Ma, 6 1981

¢ C ©S Ragravendra and M. D. Ercegovac, "A s mulator for on-
're arithmet c," Proceedings of 5th Symposium on Computer
A- thmet ' c, May 1981, pp 92-98.
10 ¥ % Trived: and M D Ercegovac, "On-line algorithms for
3 v s o0 and mu'tip cation," TEEE Trans on Computers,
Vo C-26, Nz 7, Juiy 1977, pp 681-687
13 v G Oklobdz;_ja ard M. D Ercegovac, “"An on-line square root

aigorithm, " IEEE Trans. on Computers, Vol (-31, No 1,
Jar 1982, pp 70-7%

f.rst digit of the result becomes available for the following
coerations. Thus the computation of the operations which use as
1nout the result of previous operations does not have to wait for
the previous ones to finish. The second feature of on-line
ar thmetic is that since data is transmitted in digit serial
fasn on, communications |lines are needed for only one digit for
each operand mantissa and the interconnection requirements are
greatiy redu.ed. This feature makes on-line arithmetic very
attractive for VLSI implementation where interconnection
reaqu:rement 1s of great concern.

In tne following we discuss some of the issues involved in
2o ving fiocating-point on-iine algorithms to a processor array
'mo ementation of the SVD aigorithm. The example we use here s

vme SVD algorithm by Luk,12

which is implemented using a
7 ang.rar processor array. For details of the design and the

2:32r vnm, please refer to the above mentioned reference.

3 2 0r-i1ne implementation of the SVD algorithm
Tre algorithm by Luk has two phases. In the first phase, the
mat- s s transformed into upper triangular form. In the second

~"ase. the upper triangular matrix :s diagonaiized using 2 ~sided

Jacobt rotat.ons. The algorithm s performed on a triangular
array =f processors. The required computations for each node is
summar zed as follcws. Suppose each processcor s associ ated with

MNOox

w
4 ~atr , elemer+s [
Yy

12 F Lur, "A ¢-.anquliar procensor array for computi:ng the
5 fgular value decomposition,”" TR84-625, Dept of Computer
Lo oence, Cormell Univ | July 1984

33

Triangularization phase:

dragonal node processor (calcuiation of rotation angle)

\/1+p2
cosB « p sinB
w’ + w cosB + y sinB

x’ ¢« x cosB + z sinB

N
+
|

=

s'nB +« 7z cosB

non-aragonal node

1@
3
O
[a)
@
0
wn
G

irctation)
w'o* w 2csH o+, s.nH
x’ + « 2zsH + 2z s.nB
y ' ¢+ -w s nB + y cosB
27 ¢ -x 5.n8 + 2 cosB
U agonalization phase:

dragonal node processcr (calcu'atior of rotation angle)

siny « S1anio)
¢1+p2

cosV « p siny

w +* p = w cosy
2’ + r = z cosV + x siny
x ' "_y’* g = w sinVy
g~ —F

2q

t « -sign(f) [IPB] - V]’ﬁ?]

34

cosd «

V1 + LQ

sind « ¢ cosd

o c052¢ + r s}n2¢ - 29 sindcosd

w * Cl =
. -2 2 .
z - dQ = p sin® + r cos™® + 29 sindbcosd

(I)

x + y" « 0
non-diagonai node processor

w + wcosd - y sind

y * wsind + y cos¢

x *+ x cosd - sind

N

2’ » sind + z cosd

w'l ¢ w' cos¥ - y’ siny
y' '+ w sin¥ + y’ cosV
77 ¢ %' cos¥Y -~ 77 siny
2’ +« x’ sin¥ + 27 cosV
w' '’ +« w" cosB - x" sinB
7 e w" sinB o+ X" cosB
y' 7« y" cosB - z" sinB
2777« " snB 4+ 2" cost

A Zomputat i ~rn tree can be deveicped for the computation
performed in euch processocr, whnich shows the data dependency
Detwee~ operat:ons and prov o des an easy way Lo est . mate the total
“r-1ine delay of the computat icr A computation tree for the
“utat.ons of the diagonail zat. r prase for a d.agonal

processor node s shown in Figure 11

35

p
z cos¥ X sin¥
I
w sin¥
q
Fog.re 11 Eramp.e ' ~orpLtat ion tree

36

Figure
11 E x
. ample
of computation tree (
continued)
)

37

In each processor, one or- ine arithmetic unit i1s needed for
each arithmetic operation. This s because when performing on-
line arithmetic, the arithmetic operations are highly overliapped
and hence the hardware cannot be shared. Counting up the total
number of operations performed in each processor for each phase,
we have the number of on-iine arithmetic units needed in each

processor for each phase as shown in Table 6.

diagona! node non-diagonal node

36

I l

l |

| 1 ! 15
I |

| | 36
| l

| |
| . |
I 12 I
| I
l I
| l

Table 6. Number of ari thmetic units per processor

In floating-point on-line arithmetic operations, there are
two kinds of delays. One is the delay introduced by the
aigori thms themselves which is called the on-1line delay and
dencted by &, and is defined as the number of operand digits
neeaded for the algorithm to produce the first output digit. This
detay s affected by the degree of redundancy and the radix of
the number representation system used, and is usually a small
integer between 1 and 4. The second kind of delay is that due to
normal ization of the operands and results, and is variable. For
our SVD algorithm, an estimate for the |lower bound of the delay

of the computation would be that caused by the on-line delay of

each cperation. According to [13], this s
[L
TOL = Ln +"§1 (éi + 1) td

38

where L is the number of tevels cf the computation tree, <5.| s
the largest on-1line delay of the a0 ‘evel, n 1s the number of
dtg - ts to be calculated for the result, and td 1s the digit-step
time which is the time needed to load the input digits and

compute one digit of the result.

3.3 Processor organization

The architecture of the on-iine arithmetic processor is based
cn that given by Gorji~Sinak: and Ercegovac.13 Here we give oniy
a brief description.

Each processor contains storage for 4 matrix elements, a
gicba! control unit (GCU), and a number of on-line arithmetic
wnots (OLU) .

Each OLU consists of an exponent unit (EU) and a number
(deperading upon the precision requirement) of identical
processing elements (PEs). Each PE is a digit-siice on-line
ar thmetic unit. The structure of an on-line division unit is
shown :n Figure 12, and details of the design are given in [13].
I+ 's menticoned therein that the proposed organization is capable
of performing add/subtract and multiply with minor modifications
and no increase tn hardware. It can readily be shown that an on-
line division unit can also perform the on-line square root
algorithm. In Figure 12 the number of PEs is equal to the

precision required and the X and Y buses are used for

13 A Gorji-Sinaki and M. D. Ercegovac, "Design of a digit-siice
osri-line arithmetic unit," Proceedings of 5th Symposium on
Computer Arithmetic, May 1981, pp 72-80.

39

correction factors applied to the sguare roct and division

operations. Also, e and ey are the exponents.
e X-BUS
% Y.BUS —
e l
GLOBAL __/__4 J Y N .
CONTROL jo-l.-o] EU jo---aof PE, | PE, jo----=
UNIT (GCU) ‘ e+ e -
Z-BUS (TO NEXT ON-LINE UNIT)
Figure 12 Organization of an on-iine division unit.

For each of the data eiements transmitted between processors,

eacn processor needs to have two sets of interconnection |ines:
ore for input and the other for output. This is because the

con~ect:ons cannot be shared due to the computation overiap in

or-!ine ar thmetic Each set of connections for a2 single data
elemert inciudes |ines for the exponent, for one digit of
mant.ssa, and possibly some controi iine for signaling the

arr:vai of data.

3.4 Remarks

Fixed-point vs floating-point arithmetic:

Irn fixed-po'nt on-line arithmeti c, there are certain
~estr.ctions on the domain of the operands to guarantee that the
error of the result is within certa:n range. Hence if fixed-
pcint arithmetic :s used, the operands will have to be converted

40

to within the required domain before each arithmetic operation

starts and later the result will have to be converted back to get
the correct result. The range requirement may be different for
different arithmetic operations. Thus, fixed-point on-line

arithmetic induces substantial overhead and is not suitable for
complex algorithms. In floating-point arithmetic, on the other
hand, the aigorithms always produce normalized results, assuming
the operands are normalized. Hence no extra work i1s needed when

a number of on-line operations are cascaded.

Computation of iterative algorithms:

When using on-line arithmetic to implement an iterative
algor.thm, the usual way to handle the iteration is to replicate
~rte hardware for the number of iterations desired. However, this
is nct always necessary since usually only finite precision is
rea. red for the computation. In the case of the diagonalization
prase of our SVD aligorithm, for example, the total on-line delay
cf the operations performed on a diagonal processor node is 34
aig t-steps. Each iteration includes operations in the odd-
numbered rows of processors and then in the even-numbered rows.
Hence the time between the start of consecutive i1terations is 68
aig t-steps. If the regquired number of digits of the result s
less than, say, 60, thern no replication of the processor array is
reeded. Likewise, doubling the array will allow up to about 130

219 s of preci s.ion.

41

The digit-step delay:

The digit-step time, which is the time needed to compute a
single digit of the result of an arithmetic operation, depends on
the time needed for exponent calculation, for execution of the
recursion formula, for loading the input digits, and for
performing the output digit selection process. The exponent
caicuiation involves only fixed-point addition/subtraction, and
we assume that this requires less time than that required by the
mantissa digit computations. So the digit-step time s basically
determined by the time needed for the basic recursion formula and
the dig't serection process An analysis of the digit-step time
‘s given in [13], and we have the following formula

T = [8k + 7ceilingl092(k + 1) + 24] 69

STEP

where the radix is r = 2k and 69 1s the gate deiay. For k = 2 we

note that thne time step will be greater than 40 times the gate
deiay This value is based on the time required toc perform a
car-y-propagate addition across some | 1mited number of bits,
wh.-r depends on the selection rules and the precis:on
Typica''y, it might involve 8 - 9 bits for division. It s
rmportant to minimize the number of delays compared tc that
associated wrth full carry propagation in conventional
arithmetic. For this reason we feel that less than 10 gate
de'ays would be a minimally aliowed value, and therefore more
werk 1S required in this regard We note also that thne number of
gate deiays per time step is a function of the arithmetic
ope~ation Hence, the time step associated with the sliowest

42

operatic” w . geterT e ¢ *.me step, resulting in

T
0"
W
(o
14
3

nefficie~t _sage of raraware

On-lire ar thnmet ¢, -zmpares *- ~onventiona! arithmetic, has
the advantages of reagucea ~-mm_-.2a3at.on reqQuirements and highly
moduiar ana ur:form impieme-tat or 4, These advantages make
or-i ne aritrmet ¢ r.gnly s. tavie for LSI/VLSI implementation.

Tre processor crganizatior mert.oned .n this paper allows

repl cat.ng the basic PEs tc form the OLU, each capable of
pe-fcrm:ng some arithmetic =-peration, and then putting together a
numper of OLUs, aiong with other components such as GCU, storage
devices, etc , tc form a processor. This design is quite

f exicie and it s straightforward to design processors for other
zome.tatons

Mzre study 's needed for problems such as the accumulative

e "2~ pehav:or, on-line algorithms for compound operations, and
ways =2 nandle the variable delay caused by both normalization

Z Zavta Toming through paths of different length in the

F -2 -3 Fz -t Operat ons
- =]

s s a3 e float ng point or-line arithmetic operation it

s rcot necessary to worry about the problem of normalization of
operations (v e | for subtraction) because the on-line unit can
deal with circ.irstances where canceliation occurs in the most
gr ¥ ~ant b.te Hrwe.e- for mult ple on-1li1ne urits, as for
esampte o tre “VD argur o tem thais delay, which s variable,

TLroduTes o Sorealiing problem This must be handled with some
acc-irr ate mard-shak.ng technique, data bufferi.ng or data-driven

.yoe ~perat e, which incurs extra hardware overhead.

43

Compound Operations

There are two basic approaches to implementation of an
aigorithm by on-line technigues The straightforward approach,
con which we will base our analysis, uses a separate on-line unit

for each arithmetic operation (add, multiply, etc.), each with

1ts own set of selection rules. An alternative approach which we
have not pursued, is to build an on-line unit for an entire
compound unit with its own selection rules. The

advartages/disadvantages of th:s approach remain to be

geterm ned However, there are possibilities that properly
chosen primitives could provide ways of avoiding scaling problems
for ‘ixed point operations and synchronization problems for

fizaz ng point operations.

44

4 O Aigoritnms for Sguare Root and for Tangent to Cosine

Conversion

4.1 Introduction

A step in the conversion of a coefficient matrix to upper
triangular form, by the method of Givens rotations, involves
computinc the sine and cosine of a vector angle from the values
of its x and y coordinates. The obvious approach evaluates the

relations

X . Yy
cos 8 = and sin 6 =
2 2.1/2 2 2,1/2
(2« yHY/ 2+ YD
Or 2 fixed point computer, lcss of accuracy can result from the
squaring of x or y in cases where these values are small. Also

the conventional algorithm for extracting the square root is time

comsuming and becomes a bottleneck in the speed of processing.
T-is report discusses a number of algorithms which simpiify

the square root process, and other algorithms which avoid it

altogether in the computation of sine and cosine.

4.2 Saguare root by polynomial approximation and iterat)ve

correction

Approximating the function VN over the entire range of
possibie arguments is quite impractical. The problem can be
simp:ified by recognizing that the argument need only range
tetween 0.25 and 1.00, since any positive number can be put in
tris range by repeated shifts of two binary places each. After
tre square root is found, it can then be restored to its correct
range by an egual number of shifts of one binary place each.

45

Pe ynom a approximations to the function
) pp

R = VN 025 ¢ N<1O00

can ve found by Iibrary algor thms which compute the coefficients
cf the least-squares best fitting polynomial when given a set of
po:nts lying on the desired curve Starting with straight |ine,
paraboiic, or cubic approx mations, the accuracy increases
rough'y by a factor of 4 for each increase in the order of the

po'y~om al Uup to the point where the computation detericrates due

tz rolnactf error In genera., the square root cannot be

ta . ated to the full accuracy of a given computer by using a
r13" Trder poiynomial approx rmation. A better approach is to use
2 cowe- orger polynomial to provide a "first guess" input to a

Newwsr-Raphson iteration formula

Ry = (NJR_ + R_)/2

where
N is the given number.
PP 's the first approximation to the desired root.
Rl ts the second approx mation to the desired root
Tre 1terat . on can be applied several times Each application
witt double the number of accurate places 1n the resuit unt:il the
im-t set by the compute- register size 1s reached A +radeoff

must. be made between the order of the polynomial and the number
cf iterations required to bring the result to full accuracy.

46

Fuo ' accuracy on a 32-bit computer can be had from a straight
"ine approx:mation followed by 3 iterations, or from a parabolic
approx mation followed by 2 iterations. Considerations involved

'n making a choice will be discussed in a later section.

4 3 Trne reciprocal square root
The algorithms of Section 4.2 can be used wherever the square
oot ©of a number s required. In the case where the result is to

pe used as 3 divisor, such as in the formula

x

2 2
(x7 + y7)

cos 6 = 173

L m.gnt be advantageous to use an approximation to the function

i
Zt |-

foiowed by iterations using the formuia

R1=(3—NtRotRo)tRo/2
It s found “hat attaining 32-bit accuracy requires using a 4th
order polynomial followed by two iterations. The storage
required for two additiorial coefficients and the two additional
multiplications required in each step more than offset the

advantage gained by eliminating one division

47

4. 4 Aigor tnm "pythag"

. 4
Moier and Morrlsonl present an algor:thm which computes

2 2.1/2
Yy

T+ directly trom x and y without taking a square root
Initialize:

P = max (Ix|, lyl)

Q=mn (Ixl, lyl)

Iterate:

s = a%/(aP? + @%)

P =P+ 2 =S xP

Q=S =Q
After 3 iterations, P will contain the desireq
result to the full accuracy of a computer with

less than 60 bits.

The authors state that Pythag is potentially faster than
Newton-Raphson i1teration for the square root because 1t s
cub.cally convergent compared with quadratic convergerce for
Newton-Raphson i1teration This might be true +f the result were
warted to hundreds of piaces, but in real situations tne
acvantage of Pythag is lost because of the greater amount of

compotation required per step of iteration.

4.5 Tangent tc cosine conversion

The use of Givens rotations for matrix triangquiar zat on does
2.1/2
y)

: 2
~o*% require the evaluat . on of («° + f some more direct

"

14 "Replacing Square Roots by Pythagorean Sums," Cleve Moler &
Donald Morrison, IBM J Res Develop - Vol 27, No. 6,
Nov. 83, p 577.

48

wa, car pe found to compute s ne and cos:ine from the value of tne
tangent.

We have found that this car bDe done by a variation of the
me~hod described in Section 4 2 The method involves the use of

a po'ynomial approximation to the function
cos 4 = f (tan 6)

o owed by one or two steps of iteraticn using the formulae

U=2¢c%+ (cT?
o o
3 - U
1 2 Co
wrere.
T = the given value of tan 6

C_ = the first approximation of cos 0

)
H

the se:ond approximation of cos 6
Tre vaiue of sin 8 s obtained from
sin B = cos 6 tan 6

re practicality of this method depends on the observation

trat the tangent need only range from O to 1 in the polyromia!

apcroximation of cos (arctan ;. If y is greater than x, these
arguments need only be interchanged and the routine wiil compute
sin 8 from cotan 6. The cosine is then found from

cos 0 = sin 8 cotan 8

49

-

T~e ~-out.re s somewnat comp. cated by the reaurement to
szve the s gns of x and y and tc *:nd the abso:'ute vaiues of «x
ar2 y for use in the remainder cf the computati on A comparison
cf these absoclute values then cetermines :f an interchange :s
needed. A fiag must be set to .ndicate that the interchange must
ve unccre at the end of the computation. The original signs of «
ara v are then apoiied directly to cos 6 and sin 6 respectively.

2
an tC Ccosine convers i on

-
!

o
2]

I~ m2v be possible to cesign chip hardware which wi!l
Je~erm-~e the greater of x and y in the absolute sense without
‘ -st comput o ng absolute vaiues of x and y. If this s poss}bye,
szre * me will be saved 1n the execution of the routine. A
~-~seq.e~te s that 2 sign wii! now be attached to the computed
va <& 2% vtan @ The routine can be made :1ndependent of this sign

T, S -3 a polynomia approximation of

. 2
cos 6 = fltarn® 8)
-) .
e ~erat . or steps w Il not regu.re modi ficat . on s nce tan 6
e~ne 3z aw thae sguare 1rn the formu & The signs of « ara y must
s re saved for restcr-at i orn to cos 6 and sin 6. As pefore,

. 2 .
“re range of tar® 0 need on'y be ‘rom O to 1

50

4.7 Summary of Previous Algorithms
1. Polynomial coefficients
a. Square root
First degree polynomial
Ro = 11/16 N + 11/32

With 2 iterations, error = 6 x 10—8 rms

With 3 iterations, error = 1071 rms

Second degree polynomial

R, = -0.316394414 N° + 1.052146819 N + 0.259248366
With 2 iterations, error = 6 x 10—11 rms
2. Reciprocal square root

Third degree polynomial

2

Ro = -2,439288044 N3 + 6.232249739 N° - 5.912738903 N +

3.112778043

With 2 iterations, error = 6 x 10-9 rms

3. Tangent to cosine conversion
Sixth degree polynomial
C_ = 0.114580644 T° - 0.453009177 T° + 0 593659040 T* -
0.054354432 T° - 0.493471808 T° - 0.000296313 T + 1.000001911
With no iterations, error = 1.597E-6 rms

With 1 iteration, error = 6 105E-12 rms

51

2 .)
4 Tan® to cosine conversion

Fifth degree polynomial

C_, = -0.031263642 TS + 0.128727929

2 0.498991485 T + 0

O 362943041 T
With no iterations, error

With 1 iteration, error =

4.8 Estimated run times
In this section each algorithm
steps, starting in every case with

enaing with the output of s:ne and

T4 - 0.254304918 TS +

999983578
= 7 678E-6 rms

1.353E-10 rms

is |isted as a series of
the values of x and y and

cCoSs Ine The estimated number

of high speed (arithmetic) clock cycles for each step is

tabulated and the total elapsed time i1s given. A summary of

resu'ts 1f given here:

CLOCK

ALGORITHM CYCLES
1 3 Square root with 1st degree polynomial 83
o Square root with 2,nd degree polynomial 77
c. The above with 2 AlLUs 60
2 Reciprocal square root with 4th degree polynomial 101
Algorithm PYTHAG 167
3 Tan to cos with 6th degree polynomial 103
4 Tan2 to cos with 5th degree polynomial 101

I~ 's evident that 1b and 1c¢ provi.de the shortest run times. If

lcss of accuracy due to squaring of

52

» and y 15 found to be

significant, then algorithms 3 and 4 can be considered. An
example of the actual operations performed for 1lb 1s shown in
Figure 13.

load x

square x

store x

load y

square y

add x2

shift to range

store result (N)

store shift count

mult by a

add b

mult by N

add C

store result (RO)

foad N

divide by Ro 1
2 t i mes add Ro

shift 1 place

store result (Rl)

shift to range

store result (x2 + y2)1/2 =

D
load x

divide by D

store resuit (cos)

lfoad y

divide by D

store result (sin)

= D = = O = o= N H NN ODONH N T N T e = U

~
~

F. gure 13. Steps required to perform sguare root (method 1b).

53

4.9 "Best" algorithm for computing (x2 + y2)1/2, "HYPQT"

This can be written as:

2 1/2
r=x(1 + XE) or as r = x(1 + (5)2)

X

1/2

On a2 fixed point computer, the first form results in loss of
accuracy if x and y are smal!l numbers. For example, on a
computer with 30 bits to the right of the binary point, numbers
which occupy only the last 15 bits will become zero when squared.
The second form avoids this error by performing the division
before the squaring. If onty one number i1s small, accuracy will
pe 'mproved 1f this number is made the numerator of the fraction.
This is done in the first steps of the algorithm by taking the
absoc'ute values of x and y, comparing them, and performing an
excrange if required. The algorithm as described thus far can be
Jsed with a conventional square-root procedure, and constitutes a
vai:d methoa for avoiding the squaring error.

Tne running time of the algorithm can be shortened by
el'm nating the conventional square root and finding the result

by an i1terative procedure. Given the expression:

F = a1 s (HH/2

we wiil compute (1 + U)l/2 where U = (y/x)2 The argument U will
range onty from O to 1 if the comparison and exchange of x and y
rave been performed as described above The function

1/2

fU) = (1 + U) can be computed by Newton-Raphson i1teration:

54

—lig+f0)+2

where fO = a first guess,

fl = the improved value.

The iteration can be repeated any number of times, and at
each step will double the number of accurate bits. The most
efficient algorithm results if the iteration is performed only
once In our example this requires a first guess accurate to

15 bits to give a final resuft good to 30 bits.

1/2

The function (1 + U) is a smooth function which can be

wei |l represented by a polynomial approximation of relatively few
terms. The coefficients of the polynomial are computed by the.
least-squares procedure. This computation is done only once and
is not part of the algorithm. The resulting coefficients are
stored in permanent memory for use in the algorithm. The 4th
order poiynomial is adequate to give 17-bit accuracy. The

po ynomial coefficients are

rms error:
ORDER 2
-0.070215334983
0.482062943591
1.001323600003 4.701 E-4

ORDER 3
0.024014900953
-0.106237686413
0.496400319759
1.000158637158 5.125 E-5

ORDER 4
-0.010281085549
0.044577072051
-0 719412897544
0.499294445341
1.000020416187 6 240 E-6

ORDER 5

ORDER 6

ORDER 7

ORDER 8

.004933240713
.022614187331
.055513244505

123484054442
499864663374

.000002729927

.002537302797
.012545149104
.031247590762
.060093537381
.124615400309
.499974514201

000000373098

.001367498511
.007323547587
.019161948440
.035823977127
.061743633664
124907280763
.499995274613
.000000051632

.000762269076
.004416574816
.012297231345
.023411232648
.037853839273
. 062278473297
.124978526529
.499999135213

000000007192

56

Yms error

8 124 E-7

1.106 E-7

1.556 E-8

2.242 E-9

ana the aigo-ithm steps are (4th degree polynomial)

load x

abs value

load y

abs vaiue

compare

exchange (if required)
save abs x (or abs y)
Qivide

sQuare

save result (U)

mult by a

add b

mult by U

add ¢

mult by U

add d

mult by U

add e

save result (f.)

oad U (shifted)

add 0.5

divide by f

add f. (shifted)

mult gy abs x (or abs y)

Aigorithm HYPOT computes (x2 + y2)1/2 with 30-bit accuracy.
An essential feature is the division of y by x before squaring,
whicn avoids the loss of accuracy associated with the squaring of
smail numbers. The possible interchange of x and y at the
beginn ng of the algorithm does not require the setting of a
log:za: flag, since the operation does not need tc be "undone" at
the end of the algorithm. There is no need to scale and unscale
numbers except for two simple one-place shifts which do not need
to be undone.

Aigorithm HYPOT may be compared with algorithm PYTHAG [14]
which s advocated by two authors at IBM. Both accomplish the
same result but PYTHAG requires 147 clock cycles compared with 65
cycies for HYPOT. This corresponds to 13 multiply times, only
~six times slower than if one had a hardwired square-root circuit
as fast as a muitiplier.

57

APPENDIX A

DIVISICN SCHEMES WITH SIMPLIFIED SELECTIC! :.__:
AND PREDICTION OF QUOTIENT DIGITS
Milos D. Ercegovac

August 3, 1983

Report No.l

l. Introduction

In a previous report, a paper presented at the 6th IEEE Sym-

posium on Computer Arithmetic [ERCEB3), a general division scheme

was presented, based on a divisor/dividend transformation tech-
nigque such that the selection of the quotient digits can be per-

formed by simple rounding.

In this report we elaborate on the implementation and per-
formance aspects of a radix-4 variant. Of particular interest is
the fact that the next quotient digit can be obtained in parallel

with the next remainder computation.

The discussion and results discussed here are preliminary

ana reqgquire further refinement,

2. Divisor and Dividend Transformation

we follow closely the results from [ERCE83] in this deriva-

M.Ercegovac A-1 August 3

Eoubg Q0 Lbe divdsel

[cd - A
x § 4r2 ea > 0.0156

*
so that the transformed divisor X 1is in the interv .l

1+1/64)

Transformatiop steps

The scaled remainders for the transformation are defined as

D. = 4k-l

where XO = X. We want that lxp - 11 £1/64 or, equivalepfly, that

094‘5’*l § 1/64. hssuming that ID | § 1, p=d.

The expressions for the transformation are:

2X, -1 if X, < 0.75

0 0
XO -1 otherwise

That is, S0 €« {0,1}.

02 = 4Dl + Sl + SlDl
Equivaiently,
501 + 1 if §; = 1
D2 = 4Dl if S1 =0
302 -1 1f Sl = -1
D3 = 402 + 82 + SZD2/4

"“.Ercegovac r=2

August 3

D, = 4D

4 + 53 + S5,D,/16

3 373

The transformed divisor 1is

* -3
X =X, = 044 + 1

The initial dividend is transformed using the following

sion:

Yy, = Y, (1 +s 47Ky k=0,1,2,3

k+1 k

SedectiQn @f S;, S, and S,

The selection intervals are determined by evaluating

-k+1

D, = (D, - sh + 5,4)

for Dk+l = dmax/dmin and all values of §, = -2,-1,0,1,2.

k
ing -0.99 < D4 < 0.99 we obtain the following intervais:

dmin = -0.99, dmax = 0.99

Selection Intervals for k= 3

0.2606452, dmax 0.7716129, delta

s = =2, dmin

0.0025397, dmax 0.5053968, delta

]

s = =1, dmin

s = 0, dmin = -0.2475000, dmax = 0.2475000, delta
s = l, dmin = -0.4898462, dmax = -0.0024615, delta
s = 2, dmin = -0.7248485, dmax = -0.2448485, delta

amin=-0.7248484848, dmax=0.7716129032

Selection Intervals for k= 2

M.Ercegovac =3

recur-

Assum-

0.7716129
0.2447517
0.2449603
0.2450385

0.2449977

August 3

s = -2, dmin = 0.3643290,
s = -1, dmin = 0.0733737,
s = 0, dmin = -0.1812121,
s = 1, dmin = -0.4058467,
s = 2, dmin = -0.6055219,

dmin=-0.6055218855, dmax=0.7918894009

Selection Intervals for k=

s = -2, dmin = 0.6972391,
s = =1, dmin = 0.1314927,
s = 0, dmin = -0.1513805,
s = 1, dmin = -0.3211044,
s = 2, dmin = -0.4342536,

dmin=-0.4342536476, dmax=1.3959447005

dmax
dmax
dmax
dmax

dmax

dmax
dmax
dmax
dmax

dmax

W

L]

]

[}

0.7918894, delta
0.4724301, delta
0.1929032, delta
-0.0537381, delta
-0.2729749, delta

1.3959447, delta
0.5972965, delta
0.1979724, delta
-0.0416221, delta

-0.2013518, delta

= 0.7914894
= 0.1081011
= 0.1195295
= 0.1274740
= 0.1328718

= 1.3959447
~ -0.0999426
= 0.0664796

= 0.1097584

0.1197526

The overlap is indicated by "delta". A set of selection rules 1is

given next. In these rules, d and s denote the corresponding D

ana Sk’ respectively.

Select Sl

if (d<=-0.1)

else if ((d>-0.1)&(d<=0.165))

else
Select S

2

1f (d<=-0.33)

M.Ercegovac

wn

4]

k

August 3

L}
—
-e

else 1f ((d>-0.33)&(d<=-0.1)) s
else if ((d>-0.1)&(d<=0.1)) s = 0;
else if ((d>0.1)&(d<=0.39)) s = -1;

else 5 = =2;
Select S3
i (d<==0.36) s = 2:

else if ((d>-0.36)&(d<=-0.12)) s

"
—
e

else if ((d>-0.12)&(d<=0.12)) s = O0;
else if ((d>0.12)&(d<=0.36)) s = -1;

else s = ~2;

3. Main Recursion with Quotient Digit Prediction

Once the divisor and the dividend are transformed into the
required range, we apply the following recursion on the partial

remainders.
aq. =lRi + signRi*l/?l

_ *
= 4(Ri - g;X)

where RO =Y .

A direct implementation of this recursion would reguire
three substeps:

(1) Select qi,

&

(11) Generate q.

ivx’ and

M.Ercegovac A-5 August 3

However, 1t is possible to overlap the step (i) witnh

anda (111) .

as

o]
|

(1ii) Compute Ri+l'

steps (11)

Assume that 9, 1s known. Then, define the recursion

(*
= 4 Ri - qix)

9441 = l“ﬁi - qi+C)J

where

Therefcre, the recursion step contains only two substeps

of three:

M.Ercecovac

il .
2 MR 2gq

= -1 otherwise
2

Compute Ri+l |=====—-- |
Compute gi+l |[---—---- {

Compute qi+lX*| [===—- 1
| I !

!

Step i-1 Step 1 Step 1+l

n—6

instead

August 3

The

We give a C version of the complete radix-4 division:

#defire
tdefine
$¢define
$det ine
tdefine

main ()
{

/* Step

M.Ercegc

double x0, y0, 41, yl, 42, y2, d3, y3,d44;

double quot, power;
float r;
double err, xprime, yprime, rem, remnext;
int 1, g, gnext, sl, s2, s3, m;
x0 = X; v0O =Y, m = M; r = R;
0 */
1f (x0 < 0.75)
{
dl = 2.0*x0 - 1.0;
yl = 2,0*y0;
}
else
{
dl = x0 - 1.0;
yl = y0;
}
1 */
sl = selonel(dl);
vac =7 August 3

of the main recurcsiocn would look like

gl

Complete Radix-4 Algorithm

M 16

X 0.5

Y 0.07401786542
R 4

K1

-

! R2 | R3 | ... I R1 | Ri+l | ...

g2 I @3 | ..« | gi | gi+l | ...

r*dl + sl + sl*dl;
yl*(l + sl/r);

/* Step 2 */
s2 = seltwo(d2);

d3 = r*d2 + s2 + s2*d2/r
= y2*(1 + s2 / (r*r))

~e we

/* Step 3 */
g3 = seltre(d3);

d4 = r*d3 + s3 + s3*d3/(r*r);
yprime = y3*(1 + s3 / ({(r*r)*r));

xprime = d4/((r*r)*r) + 1;
gquot = 0;

power = 1.0;

rem = yprime;

if (rem > 0.0) g = rem + 0.5;
else g = rem - 0.5;

/* Recursion */

for (i = 1; i < m+l ; ++i)
{
remnext = r*(rem - xprime*q);
gnext = select(rem, g, xprime);
guot = quot + g*power;
err = y0/x0 - quot;
power = power/r;
g = gnext; rem = remnext;

}
/* Select sl */

selone (4d)
double g;
{

int s;

if (d <= -0.1) s
else if ((4 > ~0.1) & (d <= 0.165)) s
else s

— O
e WMy Wy

return(s);
}

/* Select s2 */

M.Ercegovac A-8 August 3

seltwo (d)
doutle a:
{

int s;
if (4 <= =-0.33) s = 23
else if ((4 > -0.33) & (d <= -0.1)) s = 1;
else if ((d > -0.1) & (4@ <= 0.1)) s = 0;
else if ((d > 0.1) & (d <= 0.39 1)) s = =1;
else s = =23
returnis);

}

/* Select s3 */

seltre (d)

double 4d;

{
int s;
if (4 <= =-0.36) s = 2
else if ((4 > -0.36) & (d <= -0.12)) s = 1;
else if ((d > =-0.12) & (d <= 0.12)) 8 = O;
else if ((d > 0.12) & (d <= 0.36)) s = —1;
else s = =2

return(s);
}

/* Select */

select (4, g, div)

double 4, div;

int g;

{
int s, k:
aouble rtrunc, dtrunc;
k = K;

/* Remainaer truncated to 6 bits; divisor replaced by 1 */

s = d * 64.0; rtrunc = s; rtrunc = rtrunc / 64.0;

s = div * 64.0; dtrunc = s; dtrunc = dtrunc / 64.0;
dtrunc = 1.0;

rtrunc = (rtrunc - g * dtrunc)* 4.0;

if (rtrunc > 0) { rtrunc + 0.5;}

s:
else s = rtrunc - 0.5;

return(s);

M.Ercegovac A9 August 3

M.Ercegovac

A~10

August 3

L} I~

0.0
0.148035

y0

0.148035

0.148035

1.0000000000, yprime =

predicted next g =

M.Ercegovac

5. Example
x0 = 0.5000000000

dl = 0.0000000000, y1
sl =0
da2 = 0.00060000000, y2
s2 =0
d3 = 0.0000000000, y3
s3 =0
d4 = 0.0000000000
xprime =

i Remainder g
predicted next g = 1

1 0.1480357308 0
predicted next g = -2

2 0.5921429234 1
predicted next q = 2

3 -1.6314283066 -2
predicted next q = -2

4 1.4742867738 2
predicted next g = 0

5 -2.1028529050 -2
predictea next g = -2

6 -0.4114116198 0
predicted next g = 1

7 -1.6456464794 -2
predictea next g = 2

8 1.4174140826 1
predicted next q = -1

9 1.6696563302 2
predicted next g = -1
10 -1.3213746790 -1
predicted next q = -1
11 -1.2854987162 -1

Quotient-

0.0000000000

0.2500000000

0.1250000000

0.1562500000

0.1484375000

0.1484375000

0.1479492288

0.1480102539

0.1480407715

0.1480369568

0.1480360031

A-11

740178654, Q =
7308

7308
7308
0.1480357308, gl =
| Error
0.1480357308
-0.1019642692
0.0230357308
-0.0082142692
~0.0004017692
' 0.0004017692
0.0000865121
0.0000254769
-0.0000050406
-0.0000012259

~-0.0000002723

0.148035/308

0

August 3

-z -1.1419948646 -1 0.1480357647 -0.0000000339

predicted next q = 2
13 -0.5679794585 -1 0.1480357051 0.0000000258
predictea next g = =1
14 1.7280821658 2 0.1480357349 -0.0000000041
predicted next q = 0
15 -1.0876713367 -1 0.1480357312 -0.0000000003
predictea next q = -1
16 -0.3506853469 0 0.1480357312 -0.0000000003

6. Binary-level Implementation

{to be done }

7. Pertormance Analysis

{tc be donel

8. Alternatives

For transformation part:
- Have a small table of reciprocals of the truncated divisor,
perhaps to 4-6 bits; use three stages of CSAs to multiply
the divisor (2 bits per stage of the reciprocal); propagate
carries to get the transformed divisor; repeat for the dividend

but do not propagate carries.

- Use radix-2 in the transformation part; possibly much simpler

implementation.

M.Ercegovac n-12 August 3

- Use radix-16 in the transformation part - details

worked out on the binary level; possibly fewer steps.

For recursion part:
~ Implement two steps in one clock period; double

the combinational logic (CSAs, selection and multiple generator).

M.Ercegovac A-13 August 3

APPENDIX B

RADIX-4 DIVISION WITH RANGE TRANSFORMATION

M. Ercegovac and T. Lang
August, 1984 (Modified August 22)

The division algorithm described has the following characteristics:

® Is of the typical recurrence type with a redundant quotient representation
with digit set between -p and p.

e Simplifies the quotient selection by restricting the rangc of the divisor to be
between 1—a and 1+a.

¢ Improves the speed of execution by predicting the quotient digit.
The execution consists of two phases (Figure 1):

(1) Transformation of the divisor X into the range (1—-a) < X < (1+a) and
adjustment of the dividend.

(2) Recurrence to obtain the quotient. .

In the next secticn we describe the algorithm and determine the value of a re-
quired to allow the quotient selection to be done by rounding. By reducing a further it
is possible to perform the rounding on a limited precision estimate of the partial
remainder. Finally we consider the possibility of predicting the quotient digit. For re.at-
ed references see [ERCES3].

The Recurrence Step and the Velneof @ .

This part of the algorithm consists in computing the sequence of partial
remainders

k{i+1] = r(R[i] —¢X) (D)

where
X is the divisor,
R[0} = Y is the dividend,
g, is a digit of the quotient Q = g4.919; * * - 9 With —p =< ¢, = p.

The quotient digit g, is sclected so that
Rli]-ql=8 (2)
with 8 a constant to be determined.
Since the quotient digit is in the range —p to p, this selection implies that
IR()| = p+B
We now determine the restriction in the range of the divisor for which this bound

on the partial remainders is satisfied, and show that in this case the computation of the
quotient is correct. !

Since
R[i+1] = r(R[i] - qX)

we can write
R[i+1] = r(R[i]-q) + r(1-X)g,

and since [R[i]-¢q;| s B, (1-a) = X = (1+a), and Jg;| = p we get
R[i+1])] = rB + rap
Consequently, for |R[i+1]| = p+8B it is sufficiznt that
rB + rap =< p+8

which results in
a s (V)1 -B(r-1)p] (3)

Now we show that this value of a results in a correct quotient. The algorithm
computes the correct quotient if

[(Y/x) = @] <r™m

with

By expansion of the recurrence we get

m
Y= X‘Zoq,-r" + r ™" 1R(m+1]

Therefore,
(¥/X) - @ = r-""!(R[m+1}X)
and
I(rrx) - Q| = r‘”‘"ﬂmﬁtﬁ'ﬂ
Consequently, the quotient is correct if

‘R[”""'l]lmu
X |mmin

Introducing the bounds on R{m+ 1] and on X, we get

<r

(p+BY(1-a) =r
which is satisfied for the bound on a obtained before.

Choice of B z.:d Precision of Remainder Estimate

Since g, is an integer, it is necessary (from (2)) that B=<1/2. For this value of B a
full precision partial remainder is required for the selection of g;. A larger value of 8
permits the use of an estimate of reduced precision. Let R[i] be an estimate of R[i] to
be used for the determination of the quotient digit. Assume that

R[i] = R[] < R[i] + 8
Then to assure that |R[i]—gq,| = B it is sufficient that

Rli] - ql=B .
and

Rli]+3-gql=B

Again, since_g; is an integer the smallest bound on IR[i]-gq;| is 12, obtained by
using rounding on R, resulting in

I8+ 12|

and therefore
d=spg-12

Consequently, to reduce the precision of R it is convenient to increase B. On the
other hand, increasing B reduces a and therefore requires more preadjusting steps. El-
iminating B from the expression (3) for a we get

a s (V)1 - @+12)(r-1Y¥p] 4

In summary, in order to have |[R[i] — ¢,| <P it is necesary to preprocess X into
the range (1-a)<X=<(1+a) and to use an estimate R[i] with precision 8 to compute ¢,
according to the function

_ [round(li!i]) ir integer(lR:[i][) <p
97 \integer(RLi)) if integer(RLID = o

Quotient Digit Prediction

The division process outlined consists of a sequence of iterations. Each of these

iterations is formed of three steps (see Figure 2):

® Determination of the remainder estimate K[i] in assimilated form
® Determination of a quotient digit ¢; (rounding)
® Sclection of a divisor multiple ¢.X

@ Subtraction to obtain new partial remainder R[i+1] in carry-save form

The time of an iteration step is

T=t,+t+t,+1,+4
where

time for assimilation of K[i]

h"
H

t, = time to round
t, = time to select the divisor multiple
t., = time of subtraction in carry-save form

1, = time to load the registers

To reduce the time of an iteration step it is possible to precompute the quotient
digit in the previous iteration step. This results in an iteration step consisting of two
parallel paths. In one the next partial remainder is obtained while in the other the next

quotient digit is computed (Figure 3a).

B~-5

Using the quotient calculation procedure presented before, the quotient digit g, ,
depends on R[i+1]. In order to predict this digit it is necessary to base the prediction on
R[i] (and maybe X) since R[i+1] has not been computed yet. Since

R[i+1] = r(R[i]-¢X)

it is possible to determine ¢;+; by

qi+1 = round(R[i+1]) = round(r(R[i]-¢X))
which could be approximated by
qi+1 = round(assim(r(R[i]- ¢.X))
(where round(a) is p if a=p.)
This prediction does not produce a significant reduction in time since the path re-

quires the same steps as the iterative step without prediction: selection of the multiple,

subtraction, assimilation, and rounding (Figure 3b).

A more promising approach is to introduce an additional approximation and com-
pute the digit quo’ ent as
qi+1 = ’Ouﬂd('(é[il‘41))
This eliminates the step of selecting the multiple of the remainder and simplifies
the subtraction, since g; is an integer (Figure 4a). The time of a step is now

T=max(t, + t,+ 4,8, +1,+1)

where ¢, now includes the subtraction of ¢, and the rounding.

B—0

If the path for calculating g,,; is longer than that to compute R[i+1], it is possi-
ble to balance the two paths by including the assimilation in the second path (Figure 4b)
and store R[i]. In addition, to reduce the critical path, it is possible to use faster circuts
in the slice required to compute R (cven duplicating this slice to reduce the complexity of
the interconnection might be convenient). In this case the time is

T=max(ty + t;,t, +t,+ 1, +1)

Since this procedure of quotient digit prediction introduces an additional approxi-
mation (using g, instead of ¢X) it produces the correct quotient if the divisor range is
further restricted, that is an additional limitation on a is introduced. We now dctcrmin;
this restriction.

The basic recurrence for i+1 can be written o

R[i+2] = rRUi+1] = giaiX)

Replacing R[i+1] in terms of R[i] we get

R[i+2] = r(r(R[i] - ¢.X) - qi+1X)

-

This can be transformed into
R[i+2] = r(r(R[i] = q) — qiv1 + r(1-X)q: + (1-X)q;41)
Since the prediction is done so that

|r(Rli) — @) = qis1 | = B
and |1-X|=a, Iqj:Sp, we obtain

R[i+2]| < r(B + rap + ap)

Consequently, for [R[i+2]|<p+B, we need

p+B=r(B + (r+1)pa)
which results in

as0- -0k

which is I/(r+1) times the value without prediction.

1+8

Prediction of the Quotient Digit and Approximation of the Remainder Estimate

To reduce the critical path in Figure 4b it is possible to compute an approximation
S[i+1] of R[i+1] instead of the exact value (of course this would require a further
reduction of the range of X to get a correct quotient). A suitable expression for S{i+1]
is

Sli+1] = r(R[i]-q)

The calculation of S[i+1] is simpler than that of R[i+1] because it does not re-
quire selection of the multiple and because the subtraction of g; is simpler than the sub-
traction of ¢, X since g; is an integer. The resulting time is (Figure S)

T=max(t, + t;,8,+ 8,84 +1t,+1)

The restriction on the range of X is now

- 8
r(r2+ +1)[r=1)]

This value of a is small and would require many transformation steps for the

divisor.

Range Transformation of the Divisor

The previous algorithm requires the divisor to be transformed into the range

(1-a) s X' s (1+a).

This transformation can be done by the following recurrence:

X[i+1] = X[i] + 8+, X[0]2~(+1)

with 12 s X[0]=X <1 and 1-2P < X[p]=X" < 1+2°7.

The selection of s;..; is done by
1 ir XO[i]=0 and X,-+1[i]=0

0 otherwise

Since X, [i]=X4[i]=...=X,[i]=X[{]’, it is more convenient to define

o{i] = 2'(x[i]-1)
and perform the equivalent recurrence

-

2li+1] = 22[i] + 54,X[0]

with z[0]=X-1 and X' = X[p] = 277z[p] + 1.

Now the selection is

B~10

1 if z;{i]=1 and z,[i]=0
Lipy = -1 it Zl[i]=0 and Zz[l]=1
0 otherwise

We now determine the selection intervals and show that, since the intervals over-
lap, it is possible to use a z with limited precision for the selection.

Since 1-27% < X[k] < 1+27, the range of z[k] is

-1 < z[k] <1
The selection intervals are determined by solving
2[i] = 12(z[i+1] - 5;4,X[0])

for z[i+1] = +1 and 5;4; =-1,0,1.

Consequently

siv1 = 1 U 2[i] e (-(1+X[0])2, (1-X[0])2)
Siv1 oir z[l] € (-msm)

$i+1 = =1 I 2[i] e ((-1+X[0])2, (1+X[0])12))

Since 12 = X[0] < 1, we obtain the ir ter vals of Figure 6a. Consequently, the fol-

lowing selection rule results

1 i zfi]s-14
Siep =10 I —Va<:z[i]<V/4
-1 z[i]=zV4

This results in an overlap of §=1/4 so that it is necessary to assimilate over posi-

tions 0, 1, 2, and 3.

B~11

The dividend has to be adjusted in accordance to the transformation of X. That
is,
Y =r(+ 2527
Instead of adjustiug the dividend, it is possible to adjust the quotient. That is,
compute Q° = Y/X" and obtain the true quotient as
Q=0'(1+ 3527

The transformation process consists of the following steps (Figure 6b):

(1) Compute z{0] = X[0]-1.
For i=0,...,p do
(2) Determine s;4; from an estimate of z{[i].
(3) Select the corresponding multiples of X and Y. a-
(4) Compute z[i+1] and Y[i+1].
(S) Compute X° = z[p]2™7 + 1

B-12

Radix-4 Implementations (with TTL Timings)

We now discuss the time and complexity for scveral radix-4 implementa-
tions. To compare them with the TTL design presented by Taylor [TAYL81] we

give timings using Taylor’s delay estimates.
We choose the following parameters:
r=4, p=2, 5=148. .
This results in
B =5/8 and a=1/64 (without prediction) and a=1/320 (with prediction).
The choice of p limits the divisor multiples required to -2,-1,0,1,2.

The choice of 3 requires a (assimilated) remainder estimate of 7 bits (3 for the in-
teger part and 4 for the fraction since a truncation of the carry-save partial remainder
after the k-th bit produces an error of 2x275). A better possibility is to truncate after
the 6th bit anC add a carry to this 6th bit. This produces an error of +27%.

If the resulting a is too small, especially with prediction, it is possible to increase
8 to 1/16 resulting in 8=9/16 and a =1/128 (with prediction). The increase in 8 results in

a remainder estimate of 8 bits (or 7 if the ad« on of the carry is done).

A) No prediction: carry-save remainder and carry-propagate estimate

B-13

In this design we implement the partial remainder in carry-save form and com-
pute the estimate using a carry-propagate adder (CPA) of four bits and a two-level net-
work to compute the carry into the 4-bit slice (only 4 bits of the estimate are required
for the rounding). The selection of the quotient digit is performed by rounding the esti-

mate (Figure 7). The time estimate for TTL is:

- determination of estimate (4-bit CPA and two-level network) 30 ns.
- rounding (two gate levels) 12 ns. '

- select multiple 19 ns.

- carry- -ave subtraction 12 ns.

- set register S ms.

TOTAL 78 ns.

This time can be reduced to 70 ns. if the selection of the multiple is done by vec-

tor AND gates and a decoded quotient (11 ns. instead of 19 ns.)

B~14

B) Slice-save partial remainder and estimate

In this design the partial remainder is computed using slices of 2 bits with t e car-
ries between slices saved (Figure 8)(this 2-bit slice is compatible with the radix-4 design,

a 4-bit slice does not scem possible).

The estimate is computed from the 9 bits corresponding to the three most signifi-
cant slices (only 6 bits of the remainder have to be assimilated in this case since there is
just one bit in the 7th position (Figure 8b)). The estimate can be computed using a 4-bit
CPA and a 3-input AND gate (Figure 8b).

The TTL time is now:

- determination of estimate (4-bit CPA and one gate) 24 ns.
- rounding (two-level network) 12 ns.

- sclect multiple 19 ns.

- subtract (2-bit slice) 12 ns.

- sct register S nsec.

TOTAL 72 ns. -
Again the time can be reduced to 66 ns. by reducing the time for selection.
C) PLA for quotient generation

In this design the remaindcr is computed in carry-save (1-bit or 2-bit slices) form
and the 6 most significant bits (12 bi s or 9 bits) are uscd directly for the quotient gen-
eration (with a PLA)(Figure 9). The PLA probably has many AND terms since addition

B~15

is involved in the function.
The TTL time is:

- computing ¢; (rounding) (PLA) 25 ns.

- select multiple 19 ns.
- subtract (carry-save) 12 ns.
- set register 5 ns.

TOTAL 61 ns.
Reducing the time of selection we get in this case 53 ns.
D) Second-level prediction

As mr:ntioned before this prediction uses ©
qi+1 = round (assim (r(R[i]-q,)))
For the values of these designs the reduction of a is from 1/64 to 1/320.
In this case there are two concurrent paths: the computation of g;; and that of
R[i+1]. As mentioned in section x, the computation of the estimate can be included in

ary of the two; the choice being made in such a way that the critical path is reduced.
We c-nsider both possibilities.

Scheme I: Estimate calculation in ¢,4+; path (Figure 10).

B-16

The two paths are as follows:
i) Estimate and calculation of g;41.

This path includes the computation of the estimate, the subtraction of ¢; and the
rounding. The computation of the estimate can be done as in cases A) or B) (Figures 7

and 8).

The subtraction of ¢, and the rounding is done as follows: Let us call
P = 4(R[i]-q) = (P-2,P-1,PoP,). Since we subtract and then multiply by 4 (and g; is

an integer), the sign of P is obtained by subtracting Qg from R, that is,
P_; = R[i]®Qdi]
The value of P is obtained by shifting R[i], that is,
(P-1,Po,P1) = (R1,K2R3)

The quotient digit is obtained by rcunding P if it is smaller than 2 and by the in-
teger part of P if it is equal or larger than 2. This results in the following table:

B-17

0Oto1 0 0
1w2 0 0 1{0 1 o|lo0o o 1
21003 0 0

3104 0 0

403 1 0
32 1 0 1| 1 1 o1 1 o
201 1 1 of|l1 1 1{1 1 o

-1100 1 1 1 0 0 0 1 1 1

From the table the following expressions result:

0-:i+1) = P_o(R,’ + Ry + R3")
Q-ifi+1] = PRy’ + RiRy + RiRy' + Ry'RoR,
Qoli+1} = (P=2' + R)(P—3 + Ry")(Ry + R)(Ry + Ry')

Substituting P_, in these expressicns it is clcar that the subtraction and rounding

-

can be performed in two gate levels.
The timing for this scheme is

- determination of the estimate (like in A or B) 20 ns. or 24 ns.
- subtraction of ¢; and rounding (2 levels) 12 ns.
- set register S ns.

TOTAL 47 ns. or 41 ns.

B~18

As in C) the complete calculation of the quotient could be done using a PLA with
12 inputs (or 9 inputs if 2-bit slices are used) resulting in a total time of 25+5=30 ns.

As comented there, since addition is involved the PLA might have many AND terms.
ii) Calculation of the partial remainder

- selection of the multiple 19 ns.
- subtraction (1-bit or 2-bit slice) 12 ns.
- set register S ns.

TOTAL 36 ns.
Again the selection can be reduced to 11 ns resulting in a total of 28 ns.

The longest path is therefore 30 ns if the PLA is used and 41 ns if it is not used.

<+

If the PLA cannot be used, the critical path can be reduced by using faster cir-
cuits in the calculation of the estimate and in the rounding. For example using FAST

circuits would produce a dela:’ of...
Scheme II: Estimate calculation as part of partial remainder path

From scheme I it can be seen that moving the calculation of the estimate to the
partial remainder path would ler;,dien it excessively (at least for the TTL timings being

considered).

What could be done is to move part of the estimate calculation. An attractive

possibility would be to includ. here the calculation of the carry into the 4-bit slice (one

B~-19

gate) and to compute also the p’s and g’s of the 4-bit slice (Figure 12). This would add
one level to the partial remainder path and reduce one level from the quotient path. The
result would be that both paths would be approximately of 35 ns. Of course, different
balances can be achieved if some of the circuits are of a faster technology.

B-20

References

[ERCES83] M.D. Ercegovac, “A Higher Radix Division with Siomple Selection of Quo-
tient Digits”, Proc. 6th Symposium on Computer Arithmetic, 1983.

[TAYLS81] G. S. Taylor, "Compatible Hardware for Division and Square Root”, Proc.
5th Symposium on Computer Arithmetic, 1981, pp.127-134.

B-21

- o etts

Swiser Ao SosELL /(3)

l TRALSFoMaTION

N
™
™
<
LV
)
m
N
™

GUOTIE t, T ;

i
! CouvEZSICH]
i

;

»)

[y
(
\
I
N
!
[

B~-22

NAVAL OCEAN SYSTEMS CENTER, SAN DIEGO, CA
VLSI FLOATING POINT CHIP DESIGN STUDY BY
JG NASH HUGHES RESEARCH LABORATORIES

v
| a
[x A B z
73 | |=6)
| 1
(TLEBLT M/ ASS jha
! =
oy \
v
{
SUIATRacrr
[f’””" Ep2| - ADD/suR
Kowarh
AR R(2¢/)
FrioRZE 34, SCvEME Wirs EREZICTICN
’\ .
BACEY o¥ R(i) awd Sik
! |
'77“‘¢-/ |
% == . t
g A
| ——
| - -2—("’)
Ty

FiooR & 3a: [TEDATION WiTh PREDICTION

}'_)>—24

MR

(]
X/
to

L

(.
Lo E
STED | |RI0wS)
<ELECT Z: B @
STER 3R (ADL/SuR jf—
| S

\
Z2[4#L'

P

Firevor 3L TAS/IC (TERA7/S4 SCHREUE

- e
ITWATE 2 -
——
!
T2u M E + P
TR T Din T T ey
- .~ 747
TCT 2wes sl t
T L E

FIlrvZ & lo . ~ A/ /T lad7/00

B-23

—x] L=

J. 4‘_
e e “\&» l*_._

¢ r .
— sELECT‘_J
‘ T

Ii ' .
S S Lo

L AssTM - | ——
t-ﬁuem. ‘ -C S A J‘_'
k2R I/

7z R(5+r)

T+, - ‘:

! - |
r
a1)
1
L ¢ /
\ & .
{
RO,
TR ol B
h \

=/t RE el TRES/zT/oy FASE L ol

2(5) Auvy 27’

B-25

I

o)
>

g
R

|
l
— SELECT
i

—

SURTD,

-~ !
A DAy L

f
Iz.»f,'. !
r———%—{{\u
L4
q l_‘
g/’v?EhL,’ :' ’7 2 Z":"l

e

.

VOIL2CINL K4y

YW INOG AONAIT pXRvy G a0yl

)

NP FL/E LI TN —P

AN 31100 _4

ﬁ\s.aw 4 Lreely L I.ﬁN

q ¢}
WSSy ooy |

LIVULRA = iﬁk:unuaw
‘ .Wx@ ——e —_—
—
b

| Si1

_ L9479 | < » ﬁ u ‘_

I e B

X

B-27

-1 -2 Y% ° G A {
N) ' ! K o .
S ‘ é;
= O, e
| <« !
L - o |
<L [~ g t i
| S|
l O + —)
- .] -
L > —o
| |
1 | o] l -1
l 1

Fioyare & JEBLECToU WTEZRY4LS

B-28

o
<

- X(o) 2 ¥ (o) w
. /ZY.'-Q wisid
:[STLECT —4- SELECT
<Y ~
¥ -
;—HE’D?;] i,
l TPA
l W +] o

Fiavee Gl TRAUSECRLATIOU SCHENE

B-29

'

2[3i]
L.
2424 21 21 2
Cw | A '
CPA
AR Fon &= /&
ROOLLD Cw=S;C, ¢ (24 G)(Ss 7 ¢5)
%3
Fsz C?——-//lé
) Gy = 20 +(S;r0) S, ¢ ¢

+ (SZ+(2)(S3 7-(3)(5-4 ‘ffq)

Fre, 7+ wo PREJICTION, /-Zrr stice CSA

-

B-30

F}@,Qa; 2-2i7 Scice CSA

-2 -t & 1t 2 3 4
- R (5]
e X
2
\{'zi 'iz» \ ‘
A c‘nh
d=Ye
['?_cuuo v 2 >3 b3
}3 Gy = Sl(‘ssrps,) C /bbEb,}
9 < o =Yy
- 4 < /‘< , _
2N Viakdgaus C-Brr Stice CSA
F/A' gé ; /{/0 PREL/ TS - < 2/, £

P~31

AL

)57

Fie.q i o PREJCTION wiry DL4
(2—8/7‘ S.L/cg)

B-32

)

2 4 o I 2 34 5

‘ RI4]
C
|
5‘Uar&A[\;\
<CU MDY
T “
Fig 10 PREDICTION, ELT/MATE ALD

B-33

‘>. *r7

PAED
‘3’3' CHJ

1 e & <17 L
‘ ‘ REFCRE S*-7TF!
v_ v

| CALC
| SUBRTRACT [0,4 ,'/31
e

C, 4
7{5 b P, } '

&
Fr6, 4§ [Pgrr oF ASSIAreAT/OL JU REpMAI V2 E
/ ’ 4

HATH

1-34

Range Teacsfcrmation of the Divisor
M. Ercegovac and T. Lang
December 20, 1984

The division algorithm discussed in the previous reports [ERLAS4] requires that
the divisor be transformed into the range (1-a) s X' = (1+a). In [ERCES83] a
transformation based on the continued product normalization algorithm [ERCET2,
ERCE73] is given. The implementation of this algorithm corresponds to a recurrence
which is difficult to speed-up sufficiently with the available hardware complexity. We
also considered several radix-2 iterative algorithms for the divisor transformation. The
one-bit-per-step alternative has an undesirably long step time while that with the predic-
tion, on the other hand, requires very complex selection rules. All of the above men-
tioned approaches are characterized by a sequential generation of digits used in the divi-
sor transformation thus precluding any overlap between the steps. As an alternative
that has more potential for a faster transformatior, we consider here an approach based
on a reciprocal approximation by power series. The method consists of two parts:

(i) Compute M, an approximation to the reciprocal of the divisor X, such that |
M - X| s /X
(ii) Multiply the divisor by M to obtain X°, such that
X"=XM and X' -1sa

1. Power Series Approximation

LetR = UD where 1 = D < 2is 2X. That is,

D = (1xpxy...xpXp4q...X,)
and
R=0©1ryy --r,)

To compute R, we decompose D such that D = X, + 27%X, where

X = (lxy x,) 1sX,<2-27¢

X:, = (0'1142""":11) 0= D2 < 1 _2—(n~k)

By Mclaurin’s series expansion we have

Rl 1
- L 1
X, o 1
l —
+ 2 szl
1
=R1————_——k
1+ 27EXR,
= Ry[1 = 27"K,R, + 27 (XR)? ~ - - -]

For the approximation of R we use the first two terms of the expansion and trun-
cate the result to ¢ bits. We get

k= k-2, - e,
where
R, is R, truncated to u bits,
R?is (R,)? truncated to s bits,
X, is X, truncated to v bits, and
0 = ¢, < 27! is the truncation error.

We now compute a bound for the approximation error e such that

a

R=R+ ¢

This error can be written as
e =e€r + ep + eg
where
- er is the error due to the use of only two terms of the series,

- eg is the error due to the truncation of R,, and
- e5 is the error due to the truncation of R{ and of X,.

We have (*)

R = (Ry+27%) = 27}R}+27)(X,+27") + €1
which results in

R=R+27"+ 27" - 27C+IR] — p-Ck+a)g, — 2=(k+s%v) 4 o
Consequently, since Rf < 1-2"* and X, = 1-27",
_(2-(k+v) + 2—(k+:)) <Ses2 4 27% 427U

The choice of k, ¢, ¢, and v should be made so that
le| = a2 since M = 2R

a=2"7
then
274+ 27+ 2% g 27p]
and
2= (k+v) 4 o-(k+s) < 2-p-1

Several choices for &, ¢, u, and v are possible to satisty these conditions. The
sclection should simplify the implementation. For example for a = 275, the following
are possible choices:

k=4,1=9, u=9, s=4, and v=4

k=5,t=9, u=8, s=3, and v=3

k=6, t=8, u=9, £=2, and v=2
Fora =277

k=5,1t=9, =10, s=4, v=4

k=6, t=9, u=10, s=3, v=3

(*) To simplify the notation some of the errors are denoted by their maximum values.

2. Reciprocal Generation for a = 27% (p = 6)

We now consider a detailed design for p = 6. We choose k=5, t=9, u=8, s=3,
and v=3.

Table 1 displays the 8-bit truncated reciprocal and its 3-bit truncated square.

Table 1
X, R, R?
X1 XXX XX | 20212222 2262328 | WoW1WaW3
1.00000 0.11111111 0.111
1.00001 0.11111000 0.111
1.00010 0.11110000 0.111
1.00011 0.11101010 0.110
1.00100 0.11100011 0.110
1.00101 0.11011101 0.101
1.00110 0.11010111 0.101
1.00111 0.11010010 0.101
1.01000 0.11001100 0.100
1.01001 0.11000111 0.100
1.01010 0.11000011 0.100
1.01011 0.10111110 0.100
1.01100 0.10111010 0.011
1.01101 0.10110110 0.011
1.01110 0.10110010 0.011
1.01111 0.10101110 0.011
1.10000 0.10101010 0.011
1.10001 0.10100111 0.011
1.10010 0.10100011 0.011
1.10011 0.10100000 0.011
1.10100 0.10011101 0.010
1.10101 0.10011010 0.010
1.10110 0.10010111 0.010
1.10111 0.10010100 0.010
1.11000 0.10010010 0.010
1.11001 0.10001111 0.010
1.11010 0.10001101 0.010
1.11011 0.10001010 0.010
1.11100 0.10001000 0.010
1.11101 0.10000110 0.010
i.11110 0.10000100 0.010
1.11111 0.10000010 0.010
c-4

These functions can be implemented using a S-input, 10-output PLA. If this is
not feasable, the table can be decomposed into subtables.

As indicated, the reciprocal R is approximated by
é = Rl - 2-4R¥i2

To perform the subtraction we could complement the subtrahend and add. How-
ever, this would require a range extension of this subtrahend, which complicates the im-
plementation. It seems better to complement the first term (it can be obtained in this
form from the PLA), add, and then complement the result. The use of ones’ comple-
ment seems better since it avoids the addition of 1 in the complcmcntanon of the result
(note that no end-around-carry is produced during the addition since z,"= 0). The trail-
ing 1's produced by the complementation of R, can be avoided by incrementing a unit in
the last significant position of the complement of Rl

The configuration of the addition is shown in Figure 1. The multiplication of Rl
by X, is implemented by the addition of three partial products.

Since the reciprocal approximation will be used to multiply the divisor in order to
obtain X°, and a radix-4 multiplication is to be used, it is necessary to recode the re-
ciprocal appronmanon to a radix-4 representation with digit set {-2,-1,0,1,2}. Due to the
fact that the most significant bits of the adder have only one operand different from
zero, it is possible to perform the recoding on the two most significant radix-4 digits
without waiting for the carry propagation from the other digits. This is convenient since
we are going to perform the multiplication beginning with the most significant digit of
the reciprocal approximation; that is, the multiplication can begin before finishing the
addition.

To simplify the recoding the six most significant bits of R, are computed in nor-
mal (oot complcmcmcd) form. Tuble 2 shows the resulting Z, obtained by complement-
ing R,, adding 1 in the least significant position and complementing again positions 0 to
S.

Table 2

X R, R?
XXX GXeXg | 20212223242526'27'28’ | wowiwaws
1.00000 0.11111001 0.111
1.00001 0.11110000 0.111
1.00010 0.11100000 0.111
1.00011 0.11101110 0.110
1.00100 0.11100101 0.110
1.00101 0.11011011 0.101
1.00110 0.11010001 0.101
1.00111 0.11010110 0.101
1.01000 0.11001100 0.100
1.01001 0.11000001 0.100
1.01010 0.11000101 0.100
1.01011 0.10111010 0.100
1.01100 0.10111110 0.011
1.01101 0.10110001 0.011
1.01110 0.10110110 0.011
1.01111 0.10101010 0.011
1.10000 0.10101110 0.011
1.10001 0.10100001 0.011
1.10010 0.10100101 0.011
1.10011 0.10011000 0.011
1.10100 0.70011011 0.010
1.10101 0.10011110 0.010
1.10110 0.10010001 0.010
1.10111 0.10010100 0.010
1.11000 .10010110 0.010
1.11001 0.10001001 0.010
1.11010 0.10001011 0.010
1.11011 0.10001110 0.010
1.11100 0.10000000 0.010
1.11101 0.10000010 0.010
1.11110 0.10000100 0.010
1.11111 0.10000110 0.010

In order to do the recoding of the first two digits without waiting for the carry,
the third digit has to absorb the carry c¢ into position S, as indicated in the figure. Since
this carry corresponds to the complement of the result, when this carry is 1, a unit has to
be subtracted from the third digit. To absorb this subtraction, we recode the digit to the
set {-1,0,1,2}. The recoding is

C-6

CZs M,
000 0
001 1
010 2
011 (1(-1)
100 -1
101 0
110 1
111 -2

Consequently, the recoding of M is:

223 M
000 0
010 1
100 | (1)(-2)
110 | (1)(-1)
001 1
011 2
101 | (1)(-1)
111 (1)0

where t = 2,24

Finally, the recoding for M is:

7 | Mg
o 1
1] 2

For the recoding of M3 and M4 we use the corresponding bits of the result of the
addition, after complementation. This results in:

RRRg | M;

#
000 0
001 1
010 1
011 2
100 -2
101 -1
110 -1
m_ | o

Using a sign-and-magnitude representation of the radix-4 digits we get the follow-
ing switching expressions:

Mm&= 0 Mm =2 Mm = 22'
S:”‘
Ml: =2 Mll = "’2"3"' + 12'23‘ MIO = "3" + 22' + 22'238'

My, = zgs + 24’28 My = z2s'cs’ + 2425c5 My = z5'cs + 25¢
M3y, = Rg M3 = RRy'Rg’ + R¢RRg My = Ry'Rg + RyRy

My =Ry My = RgRy' My = Ry

A design of the adder and the recoding circuit is shown in Figure 2.

3. Divisor Transformation

The divisor is transformed by multiplying it by M. Since the most significant digits
of M are ready first, and to use the same carry-save-adder used for the divisioa, we per-
form the multiplication beginning with the most sxgmficnnt digit of M. This type of mul-
tiplication usually requires an adder of increasing precision. However, in this case the
most significant bits ofx are 1.000000 or 0.111111, so that keeping a few extra bits is
sufficient to determine X°.

To reduce the number of multiplication steps, it is possible to load the registers
with MoX and produce 4MyX + M,X in one multiplication step. The configuration of
the multiplication steps is shown in Figure 3.

To put the divisor in the form required by the division, it is necessary to convert
it from the carry-save representation to a conventional representation. This step
cortesponds to a carry-propagate addition.

4. Timing of the Transformation
The time of the transformation is determined by the following components:

a) Detcrmination of R, and R? by the PLA. We assume 2 gate delays for this
step.

b) Recoding to obtain M and M. This requires two gate delays.

c) Multiplication step to obtain 4M X + M,X. This corresponds to 5 gate delays.

d) Three more multiplication steps to multiply by M,, M;, and M;. We assume
that the addition and recoding of these digits is overlapped with steps b) and c). This re-
quires 5x3 = 15 gate delays.

¢) The carry-propagate addition. We assume 15-20 gate delays.

The total is of 39-44 gate delays. This corresponds to 8-9 cycles.

References
[ERLAS4] M.D. Ercegovac and T. Lang, "Radix-4 Division with Range Transforma-
tion”, unpublished manuscript, 1984.

"TERCES3] M.D. Ercegovac, "A Higher Radix Division with Simple Selection of Quo-
tieut Digits™, Proc. 6th Symposium on Computer Arithmetic, 1983.

[ERCET2] M.D. Ercegovac, "Radix 16 Division, Multiplication, Logarithmic ana Sx-
ponential Algorithms Based on Continued Product Representations”, MS Thesis, Univer-
sity of Illinois at Urbana-Champaign, Department of Computer Science, August 1972.

[ERCE73] M. D. Ercegovac, "Radix-16 Evaluation of Certain Elementary Functions”,
IEEE Trans. on Computers, June 1973, pp.561-566.

T
! e 9 /0 I
0 1 2 32 4 & & 1
| vz oz 2 oz %
< Z Z, | A 7 ,
z Z 2 3 4 s | :
) B .‘ Pra . foo (/939)
l‘ ! \ ‘ ; h\\
A A 3 i ‘) ! Flg ng | {333 Llsc,(pd
e(/Z 3 ! i v ‘ .
1 1 ! - ; o |
/ " " v 37 !
({ i | r” ' fz/? § —
/ /o
2 2 2 2, Ry B Re 12, 2, | kg Ry |
< >y | t i I
' M
<ElzlE3 Mo | M, Mo Ma 4
SuleT Do £2
F L ADIxN &
’CQ'L = W, - 7%
A
Swyns |, CowdursiTiov OF 2 AuD LFcodf£)

MULTIDLIER M

N~

FA

HA

l
F4

C-11

22—-’ f M,

2 :L_,

—:—%/D— MlS 226 - Y
L

2,
7
28 —_—
b -
-_—\L ‘ -
:7 -——_J /‘1/

Frhvpe 2L, RECcOER
C-12

a)
Vo
hﬁxox* “ Y
F ol CPA ————— _ - x}‘\r’\)\l\/
+
4 “ _|v - - ,_14,I - thb
X f N i L_ Olyra
B | | * f) <
@ Nﬁivxﬂ . Xk N /\fx
ﬁ||%‘,/ .NX > _— .
y LCAD Y J 4 *‘lc...il!l‘J_
_y v AENERATD 3 . . !i-,ﬂ-\
. +— sEL | [sc | Fs |
CODE R {
L _ _ (V2,4 o)X \‘
by e —
-——— = !
[- 4
e -
~ £ Sa
¢ — e e e o —
b - ——— ——
D A
— CPA
X ¥

Fropre 3 : Diwidor TRAUSTrowd7/00 S CHEME

C-13

Approved for pubic release.
Aistabution unhimited

The views and conclusions contained in
this report are those of the authors and
should not be interpreted as representing
the othicial pohicies. either expressed or
imphed of the Naval Ocean Systems
Center or the U S Government

